— Спасибо! — наконец-то я протянул деньги, принял сдачу и кусок мяса, акуратно завернутый в большой лист упаковочной бумаги, чтоб не кровил. Напоследок не удержался, вспомнив ошметки популярных телепередач будущего, добавил: — Не подохнут свиньи на новой ферме, американцы в сельхозхозяйстве толк знают. И партия сейчас не то что при Никите Сергеевиче… — Аргументов мне не хватило, поэтому быстро закруглил: — В общем, не дождется ваш Жорик кирпичей, пусть лучше сразу себе работу на кирпичном заводе подыскивает!
Не дожидаясь возражений, развернулся и пошел прочь с пародии на рынок. В апрельский день 1969 года можно найти кучу куда более интересных дел. Особенно учитывая, что в кабинете, прямо на рабочем столе, меня дожидался настоящий персональный компьютер, скорее всего – первый в мире.
…Полгода назад, когда первый в мире восьмибитный процессор на одном чипе "встал" в серию, я был преисполнен самых грандиозных планов и надежд – "персоналка" на глазах становилась реальностью. Полупроводниковая память вполне доступна, управление клавиатурой, параллельные порты и вывод на экран монитора ребята из КБ-2 под руководством Филиппа Георгиевича Староса сравнительно быстро и без проблем загнали на отдельные микросхемы. Скромное название не должно вводить в заблуждение – именно в недрах этой разросшейся до неприличных размеров организации был доведен до ума проект игрового автомата "Денди" с "Тетрисом" на борту, а следом за ним разрабатывается "дизайн" процессора и сопутствующих чипов для полупроводникового мейнстрима СССР.
Понятно, в таком деле не обошлось без моего послезнания. Трудно даже приблизительно оценить, сколько крови выпило превращение чуда советской инженерной мысли в нечто отдаленно напоминающее "персоналку" будущего. Сколько раз пришлось буквально бить по рукам тяжелыми предметами за неуклюжий каркас-шифоньер с металлическими направляющими, огромные, нуждающиеся в ручной распайке разъемы, отдельные "поддоны" с ручками для печатных плат, желанием вместо аккуратной строчки перемычек влепить в печатную плату десяток тумблеров… Да и вообще, в кои-то веки удалось обойтись без вездесущих болтов и гаек, заменив их саморезами, которые, хвала ВАЗу, наконец-то пошли в производство для первых "копеек". Итог меня не сильно обрадовал, но на него, по крайней мере, метров с десяти можно было смотреть без содрогания. Разве что монитор непривычно массивный, да "тауэр" корпуса совсем не "мини", вполне полноценный напольный "серверный" вариант.
Добиться сходства изнутри оказалось значительно сложнее. Хотя против самого главного, шинной архитектуры, специалисты возражать и не думали. Зато научно рассчитать нужную "ширину разъема" никто не смог, поэтому пришлось наплевать на послезнание, обрывки документации по ISA, и буквально "ткнуть пальцем в небо". Так контактов стало ровно 100,[9] поровну с каждой стороны втыкаемой платы-модуля. Слотов заложили с запасом, аж двадцать штук. Напряжения питания – мощные +5В и куда более низкоамперные +12В. Остальное тоже вполне стандартно, 8-битовая шина данных, и 16-битова шина адреса. Остальное под резерв на будущее, прерывания и управление.
Как ни странно, но едва ли не основным потребителем пространства корпуса стала память. Весьма значительные в текущих реалиях 64-байтные (или 512-битные) "корпуса" SRAM требовали чуть более тысячи микросхем для максимально доступных процессору 64 килобайт. Специалистов это не слишком смущало, тут привыкли впихивать чуть не по две сотни элементов на плату, устанавливая их практически вплотную. Но все же "осетра" решили урезать, и в претендующей на массовость "базе" оставить только четыре модуля, иначе говоря, 16 килобайт. Насилу добился от инженеров "на будущее" возможность установки 8- и даже 16-килобайтных плат, тут еще никто не привык к идее постоянного апгрейда.
Еще одна "плашка" с памятью использовалась под нужды видеокарты. Пусть монитор требовал чуть меньшего объема, простота и унификация того стоила. Хотя профессионалы неодобрительно косились, но молчали, небось прикидывали тему будущего рацпредложения по экономии дефицитных чипов под нужды народного хозяйства. В быстрый рост доступных объемов ОЗУ даже самые близкие к производству люди верили лишь после "последнего китайского предупреждения". Недоброжелатели же вообще расценивали установку всех 64-х килобайт на откровенно слабую ЭВМ подрывом социалистической экономики.
С дисководами все было непросто. Пошедшая с моей подачи в серию "Спираль-3", гибрид магнитофона и граммофона с записью данных "одной дорожкой" на магнитный диск, была доступна и в общем-то вполне работоспособна. Брали их на ВЦ неохотно, но из-за запредельной полсотнирублевой дешевизны – изделие кое-как прижилось. В приложении "Программист" для сверхпопулярного советского журнала "Радио" с помощью магнитных дисков вовсю менялись программами и даже данными. Хоть и смешные шестьдесят килобайт, но… По сравнению с капризной лентой, диски, в основном благодаря своей немалой толщине, были практически неубиваемыми, и, упакованные между ненужными виниловыми пластинками, легко выдерживали "зной, морозы и пинки" славной своими традициями Почты СССР.
Не обошлось и без оборотной стороны медали. Записывать данные "маленькими кусочками" было фактически невозможно, вернее, для этого требовался каждый раз новый диск. И это еще полбеды, гораздо печальнее то, что при разработке я умудрится не подумать про время. А вот его-то как раз требовалось совсем не мало. Хочешь что-то засейвить – приготовься потратить пяток минут на медитирование с перемигивающимися лампочками. А если потерять результат жалко по-настоящему – желательно процедуру повторить раза два-три, да не забыть про протирку и ручное "скармливание" диска. В итоге десяток-другой операций в день, и работать станет реально некогда.
При этом разработка "настоящих" дискет с привычной мне цилиндрической записью и, соответственно, произвольным доступом, буксует. Электроника там сложнее как минимум на порядок, механика тоже требуется почти "часовая". Но в общем, ничего невозможного, есть документация, говорят, дошло до опытных образцов аж на целых 180 килобайт. А вот потребности пока не наблюдается, работать же "на будущее" советская промышленность не умеет принципиально – психология "сперва догоним" намертво въелась в мозги управленцев и инженеров.
Пришлось срочно придумывать паллиатив в виде опционально поставляемой "флешки". В отличии полупроводникового прототипа из XXI-го века, она представляла собой бакелитовый каркас размером с ладонь, внутри которого закреплена проволочная "сеточка" с надетыми колечками из феррита. Один модуль – целых 512 байт. Кажется, такая мелочь, но… Хранить несколько важных констант и результаты промежуточных вычислений на нем можно вне зависимости от электропитания. При большом желании реально собрать в "кубик" штучек восемь подобных девайсов, так получится настоящий "мини-винчестер". Жалко только, они реальный "хэндмейд", а значит, непомерно дороги, дефицитны, да еще и капризны. Требования к температуре меня вообще шокировали, для работы вынь и положь 40–60 градусов по Цельсию. Из-за этого инженерам пришлось ставить температурный датчик, и уже в зависимости от его показаний задавать скорость опросов, вернее, резко ее снижать при "перегреве" или "недогреве".[10]
В качестве источника электричества в "персоналке" использовался совершенно бесхитростный 50-герцовый трансформатор слоновьих габаритов, которые изящно дополнялись аморально высоким тепловыделением на линейном стабилизаторе напряжения. Хорошо еще, что новые микросхемы были сделаны по технологии КМОП. На серии ТТЛ, популярной до появления моих артефактов, потребляемая мощность и размеры были бы раз в пять больше. Так что и тут не помешали бы технологии будущего, но увы и ах, за прошедшие с моего "попадания" четыре года МЭП так и не смог полностью скопировать[11] элементную базу самого тривиального китайского блока питания от моего сотового телефона.
Кто бы мог подумать, что технических прорывов в этой пустяковине почти как в микропроцессоре. На первый взгляд, всего-то разницы, сетевое напряжение сначала выпрямляется, потом преобразуется в импульсы повышенной частоты, приходит на компактный высокочастотный трансформатор, и с его вторичной обмотки уходит на выпрямитель и фильтры. Однако по-настоящему выгодной эта операция становится при двух условиях. Во-первых, для компактного "железа" частота должна быть действительно высокой по меркам 60-х годов, порядка 200–300 килогерц,[12] во-вторых, необходима обратная связь в цепь управления "пульсирующим" транзистором, при помощи которой, собственно, и происходит стабилизация низкого напряжения.
9
Именно столько было на шине S-100, спроектированной компанией MITS в 1974 году специально для Altair 8800. Последний, несмотря на весьма компактный корпус, имел целых 18 разъемов.
10
Такая логика работы использовалась на ранних ЭВМ DEC PDP-11. Рецепт нетребовательных по температуре сердечников в СССР появился только в 1971 реальной истории.
11
Первый относительно мощный импульсный источник (на 400Вт) был создан в СССР лишь в 1975 реальной истории.
12
Исходя из существующей комплектации, до 80-х годов оптимальная частота преобразования получалась около 15-20кГц.