Оказывается, то же самое происходит не только со звуковыми волнами, но и со световыми, только по несколько другим причинам. Световые волны из удаляющегося источника – причем он может удаляться как из-за локального движения во времени, так и из-за расширения пространства, разделяющего источник и наблюдателя, – растягиваются и поэтому кажутся краснее, поскольку красный цвет расположен на длинноволновом краю видимого спектра, а волны из приближающегося источника сжимаются и кажутся синее.
В 1912 году Слайфер заметил, что линии поглощения от света, исходящего от спиральных галактик, почти все систематически сдвинуты в сторону более длинных волн (но некоторые галактики, в том числе Андромеда, испускают свет, сдвинутый в сторону более коротких волн). И сделал совершенно правильный вывод, что большинство этих объектов удаляются от нас, причем со значительной скоростью.
Хаббл сумел сравнить свои данные о расстояниях до этих спиральных галактик, как мы их теперь называем, с данными Слайфера о скоростях, с которыми они разбегаются. В 1929 году, при содействии сотрудника обсерватории Маунт-Вильсон Милтона Хьюмасона (наделенного такими инженерными талантами, что его приняли на работу в обсерваторию, хотя у него не было даже аттестата о среднем образовании), он объявил об открытии примечательного эмпирического соотношения, которое теперь носит название «закон Хаббла»: существует линейная зависимость между скоростью удаления галактики и расстоянием до нее. То есть чем дальше от нас галактики, тем быстрее они разбегаются!
Когда впервые сталкиваешься с этим удивительным фактом – что почти все галактики удаляются от нас, а те, которые в два раза дальше, и движутся в два раза быстрее, а которые в три раза дальше – в три раза быстрее, вывод, казалось бы, напрашивается сам собой: мы – центр Вселенной!
Как говорят некоторые мои друзья, хорошо бы, чтобы лично мне кто-нибудь регулярно напоминал, что это не так. Просто это в точности совпадает с соотношением, которое предсказал Леметр. Наша Вселенная и правда расширяется.
Я пытался объяснить это разными способами и, честно говоря, думаю, что понятно все равно не получится, если не умеешь смотреть на все с другой точки зрения – с другой во вселенском масштабе. Чтобы увидеть, что следует из закона Хаббла, нужно скинуть шоры нашей галактики и взглянуть на Вселенную извне. Посмотреть снаружи на трехмерную Вселенную трудно, а на двумерную – уже проще. Ниже я нарисовал подобную расширяющуюся Вселенную в разные моменты времени. Видно, что на второй картинке галактики отстоят друг от друга дальше.
А теперь представьте себе, что вы живете в одной из галактик со второго рисунка – я отметил ее белым – в момент времени t2.
Чтобы увидеть, как будет выглядеть эволюция Вселенной с точки зрения этой галактики, я просто наложил правую картинку на левую, совместив черную галактику на обеих картинках.
Вуаля! С точки зрения этой галактики все остальные галактики удаляются от нее, а те, до которых в два раза дальше, удаляются в два раза быстрее, те, которые дальше в три раза, – в три раза быстрее и т. д. Если у Вселенной нет краев, обитателям галактики кажется, что центр расширения – именно они.
Какую именно галактику при этом выбрать, неважно. Возьмем другую галактику и повторим операцию:
А теперь все зависит от точки зрения: или каждая точка – центр Вселенной, или ни одна из них не центр Вселенной. Это неважно: закон Хаббла соответствует картине расширяющейся Вселенной.
Так вот, когда в 1929 году Хаббл и Хьюмасон опубликовали результаты своего анализа, то не только сообщили, что обнаружили линейную зависимость между расстоянием и скоростью разбегания, но и сделали количественную оценку темпа расширения. Вот те самые данные, которые они тогда представили: