Самая мощная из достоверно известных солнечных вспышек наблюдалась в 1859 г.
С тех пор столь мощные вспышки, сопровождаемые гигантскими корональными выбросами, не были зарегистрированы (возможно, сравнимое событие произошло на Солнце в июле 2012 г., но выброс вещества не попал в Землю). Однако анализ отложений в ледяных кернах, а также изучение годичных колец деревьев позволяют аргументированно предположить, что мощные солнечные вспышки происходили и ранее (например, в I тыс. н. э.). Как бы то ни было, и в наше время солнечные вспышки являются самыми мощными транзиентными (т. е. происходящими время от времени) явлениями в Солнечной системе. Такие события являются потенциально опасными, поскольку они способны оказывать губительное влияние (в том числе необратимое) на электрические и электронные системы и устройства, наземную инфраструктуру и космические аппараты.
Основное излучение испускается вспышкой в хромосфере в видимом, ИК- и УФ-диапазонах электромагнитного спектра. Кроме того, несколько процентов энергии вспышки может уходить в рентгеновский диапазон. Радиосветимость Солнца (на этот диапазон обычно приходится крайне малая доля полной светимости) может во время вспышки возрастать на несколько порядков. Наконец, значительная энергия переходит в движение вещества и в ускорение частиц (последнее наблюдается в том числе по увеличению числа солнечных космических лучей и падению числа галактических космических лучей – так называемый эффект Форбуша).
Максимальная энергия хорошо изученных солнечных вспышек составляет более 1032 эрг (1025 Дж). Основная классификация вспышек по энергетике основана на потоке рентгеновского излучения от них и включает пять групп: А (самые слабые), затем В, С, М и Х (самые мощные). Внутри группы мощность обозначается цифрами. Так, С1 в 10 раз мощнее В1, а Х4 в два раза мощнее вспышки Х2. При этом мощность коронального выброса, а также светимость в видимом диапазоне лишь в среднем коррелируют с параметрами рентгеновского излучения. Самые мощные из наблюдавшихся за последние десятилетия (когда стали доступны прямые рентгеновские наблюдения и другие способы детального изучения вспышек) имеют обозначения > Х20. Например, вспышка, которой приписывают класс Х28, наблюдалась 4 ноября 2003 г., а событие Каррингтона предположительно можно оценить как вспышку класса X40–X45, хотя, конечно, точно восстановить энергетику этого события невозможно по причине отсутствия достоверных данных (рентгеновских наблюдений в то время не существовало).
Максимальная энергия известных солнечных вспышек составляет чуть более 1032 эрг.
Типичная длительность основной фазы вспышки составляет несколько минут. В это время наблюдается излучение в жестком рентгеновском диапазоне (тормозное излучение), а также в радиодиапазоне (гиросинхротронное излучение). Примерно в это же время происходит и мощная вспышка в видимом диапазоне (подобная той, что наблюдали Каррингтон и Ходжсон). Вещество начинает двигаться наружу, попадая в солнечную корону. Там оно постепенно (на протяжении десятков минут) остывает, излучая в мягком рентгеновском, жестком ультрафиолетовом и, наконец, видимом диапазонах. В случае мощных вспышек заброс вещества в верхние слои приводит к появлению коронального выброса. Чем мощнее вспышка, тем больше вероятность того, что она сопровождается выбросом.
Слабых вспышек, разумеется, больше, чем мощных. Однако их число с уменьшением энергии вспышки растет не очень быстро (дифференциальный рост числа вспышек в малом интервале энергий происходит медленнее, чем спадает квадрат энергии: dN/dE ~ E-α, где α < 2). Эта зависимость, построенная по данным наблюдений, тянется от энергий, превосходящих 1032 эрг, до энергии менее чем 1024 эрг. В результате оказывается, что в мощных вспышках суммарно выделяется немного больше энергии, чем в слабых. В частности, это означает, что слабые вспышки не могут являться эффективным механизмом нагрева солнечной короны.