Вторая часть статьи была перспективной, в ней он оставил стратегию 1866 года и принялся за другую, абсолютно отличающуюся, заинтересовавшись глобальным состоянием системы, а не отдельными скоростями молекул. В его новом подходе был использован математический объект, который физики называют "фазовым пространством". Речь идет об абстрактной сущности, в которую включается информация о положениях и импульсах (которые получаются умножением массы на скорость) всех частиц системы. Каждое положение задано тремя числами, или компонентами: по одному для каждой из пространственных осей. То же самое с импульсами, поскольку скорости могут быть направлены в любую сторону. Если газ состоит из N частиц, то точка в фазовом пространстве задана 6N числами, поскольку с каждой молекулой связано три числа для ее положения и три числа для ее импульса, всего шесть. Конфигурацию системы тогда можно уточнить, выбрав точку в фазовом пространстве; ее эволюция рассматривается как траектория, которую она описывает в этом пространстве, двигаясь от одной конфигурации к ближайшей.
Больцман воспользовался этой идеей, чтобы доказать: любой изолированный газ рано или поздно достигает гауссова распределения (в чем потерпел поражение Максвелл), и после его достижения других изменений больше не происходит. Он показал, что если энергия системы постоянна, постоянно и распределение вероятностей, и что при большом числе частиц это распределение окажется распределением Максвелла.
Он не только смог воспроизвести результат своего предшественника, но и предоставил гораздо более строгое и общее обоснование. Кроме того, он наметил контуры своей последующей статьи 1877 года, в которой полностью принял метод рассмотрения газа, положив начало статистической физике.
Действительные числа состоят из суммы множеств рациональных и иррациональных чисел. Первые числа — те, что можно выразить в виде частного между двумя целыми числами; вторые нельзя выразить таким образом. Примеры рациональных чисел — 2,5/7 или 2,35; а π, е или √2 — иррациональные числа. Иррациональные числа в бесконечное число раз изобильнее, чем рациональные. В самом деле между двумя любыми действительными числами существует бесконечное число иррациональных чисел. Чтобы убедиться в этом свойстве, достаточно сосредоточиться на их десятичном выражении. Возьмем два очень близких числа, таких как 1,00000000250 и 1,00000000251. Если добавить произвольный набор нулей и единиц после 5, получается бесконечное число сочетаний (поскольку существует бесконечное число знаков после запятой) чисел, имеющих значение между двумя предыдущими. Какой бы маленькой ни была разница, их всегда будет бесконечное число, поскольку бесконечность минус конечное число остается бесконечностью. При заданном конечном времени невозможно, чтобы молекула прошла через все возможные состояния энергии, если она способна принимать любые действительные значения. Единственное, в чем можно быть уверенными, — траектории будут "плотными", и с математической точки зрения это означает, что они будут проходить произвольно близко к любому числу.
Но в выводе Больцмана наблюдалась одна проблема, и состояла она в использовании того, что позже получило название "эргодической гипотезы". Речь о допущении, что при достаточном времени молекула пройдет через все возможные значения энергии, что необходимо для применения теории вероятностей в строгом виде. Предположим, что некая молекула находится в состоянии покоя в некий момент; каждый раз, когда она будет подвергаться столкновению, ее кинетическая энергия будет изменена и примет новое произвольное значение; если подождать достаточно времени, кажется логичным предположить, что молекула пройдет через все возможные значения энергии.
Однако действительные числа (рациональные и иррациональные) обладают свойствами, о которых Больцман не знал и которые противоречат его гипотезе: между двумя любыми числами существует бесконечное число других действительных чисел. Итак, даже если в нашем распоряжении будет бесконечное время, ничто не гарантирует, что произвольно меняющееся значение повторится, поскольку бесконечность действительных чисел имеет больший порядок. Если вновь обратиться к газу Больцмана, то число возможных состояний энергии бесконечно больше, чем число изменений скоростей, даже если в нашем распоряжении есть бесконечное время.