Выбрать главу
ОТВЕТ БОЛЬЦМАНА

Критика Лошмидта, должно быть, произвела впечатление на Больцмана, поскольку в результате возникли две статьи, и обе в 1877 году. В первой он ограничился ответом своему коллеге в дискурсивной форме, даже без уравнений, и сформулировал множество вопросов, которые занимали умы физиков до XXI века. Вторая статья оказалась намного более технической, и в ней он приводил новый вывод из второго принципа, используя абсолютно другой метод и совершая концептуальный скачок, обозначивший рождение статистической физики.

Первая статья начиналась с объяснения, более понятного, если это возможно, против чего возражал Лошмидт. В ней говорилось следующее:

"Так как энтропия уменьшалась бы, если бы система прошла через эту последовательность в обратном порядке, мы видим, что факт увеличения энтропии во всех физических процессах нашего мира нельзя вывести только из природы силы, которая действует между частицами, поскольку это также должно быть следствием начальных условий".

Само то, что Больцман изложил возражение в таком сжатом виде, показывает: он прекрасно понимал аргументы своего друга. Продолжение, должно быть, не очень обрадовало Лошмидта, поскольку в нем утверждалось: "Очевидно, что этот вывод очень соблазнителен и его следует назвать интересным софизмом". Использование слова "софизм" явно оскорбительно и показывает, что Больцман был совсем не доволен нападками своего учителя. В результате его ответа отношения с Лошмидтом оказались испорчены и несколько восстановились, лишь когда сам Больцман попытался вновь навести мосты в 1890-е годы, незадолго до смерти своего наставника.

Критика Лошмидта заставила Больцмана заново рассмотреть некоторые аспекты его статьи 1872 года. Самым примечательным достижением было его впервые сделанное предположение о том, что второе начало термодинамики должно выполняться не всегда, а только в огромном большинстве случаев. Так, он утверждал: "Можно только доказать, что после некоторого интервала бесконечно большое число начальных состояний приведет к однородному состоянию раньше, чем к неоднородному". То есть второе начало предсказывало: намного более вероятно, что система будет эволюционировать в однородное состояние (то есть с большей энтропией), чем то, что она разовьется в менее однородное, но что такое развитие получится не всегда.

Больцман пошел дальше и наметил свою следующую статью, утверждая, что "на основе относительных величин различных распределений состояний можно даже вычислить их вероятности". Этот тезис он развил позже, что обозначило начало статистической физики, где множества молекул берутся в целом и сравниваются не с одним и тем же газом в другие моменты, а с другими возможными конфигурациями этого газа.

Сделав введение в проблему и мастерски сформулировав свой ответ, Больцман перешел в наступление. Для этого он взял идеальный газ (газ, образованный идеальными и абсолютно упругими сферами) в неоднородном состоянии: например, в котором плотность в правой части выше, чем в левой. Он утверждал, что если позволить газу эволюционировать без внешнего воздействия, то молекулы распределятся равномерно по всему сосуду, и разница в плотности исчезнет. Как показано на следующем рисунке, газ со всеми его молекулами, собранными в углу, затем займет весь сосуд, и по-другому быть не может.

Затем Больцман поставил Лошмидта в затруднительное положение, утверждая, что, по словам последнего, если инвертировать скорость молекул в конечном положении, то газ спонтанно вернется в свое неоднородное состояние. Однако Больцман признавал невозможность доказательства того, что сферы должны перемешиваться равномерно. Но он продолжал:

"На самом деле это следствие из теории вероятностей, поскольку любое неравномерное распределение состояний, каким бы маловероятным оно ни было, нельзя считать абсолютно невозможным. (...) Действительно, ясно, что любое отдельное равномерное распределение, которое может возникнуть через некоторый интервал на основе какого-то отдельного начального состояния, настолько же невероятно, как и любое отдельное неравномерное распределение: в лотерее любое отдельное множество из пяти чисел так же невероятно, как и множество 1, 2, 3, 4, 5. Распределение состояний в итоге будет равномерным через некоторое время, только потому, что существует намного больше равномерных распределений, чем неравномерных".