Выбрать главу

"Защитником энергетики был Гельм; за ним стоял Оствальд, а за ними обоими — философия Эрнста Маха (который не присутствовал). Оппонентом был Больцман, а его секундантом — Феликс Клейн. Битва между Больцманом и Оствальдом напоминала дуэль быка и ловкого тореадора. Однако на этот раз бык победил тореадора, несмотря на всю ловкость последнего. Аргументы Больцмана попали в цель. Мы все, молодые математики, были на стороне Больцмана; для нас было ясно, что невозможно, чтобы с помощью только одного уравнения для энергии можно было вывести уравнения движения или даже материальной точки, не говоря уже о системе с произвольным числом степеней свободы.

В защиту Оствальда я должен привести комментарий из его книги "Великие люди", в которой он называет Больцмана "человеком, чья наука превзошла нас по проницательности и ясности".

Стоит отметить, что Больцман, несмотря на его дискуссии с энергетиками, продолжал поддерживать связь со многими из них. Он дружил с Оствальдом, пригласившим его занять кафедру в Лейпциге, и у него были теплые отношения с Махом. Последний послал ему экземпляр своей последней книги 1905 года, на что Больцман ответил благодарственным письмом. Что касается студентов Венского университета, источники того времени уверяют, что те не были разделены на два лагеря, а почитали обоих учителей одинаково, считая себя одновременно последователями Маха и Больцмана.

СПОР С ЦЕРМЕЛО

Проблема энергетики все еще занимала значительную часть его времени, но в 1896 году в адрес Больцмана поступило намного более серьезное с научной точки зрения возражение; даже сегодня не до конца ясно, кто выиграл спор, хотя в научной практике нет сомнений в том, что это был Больцман. Новым соперником оказался Эрнст Цермело (1871-1953), позже ставший известным своей ролью в развитии теории множеств, в то время работавший ассистентом Планка.

Возражение, которое сформулировал Цермело, сегодня известно как "парадокс рекурсивности" и основывается на самом деле на теореме, провозглашенной Анри Пуанкаре (1854-1912) шестью годами ранее. Однако за открытие этой идеи следует воздать должное Фридриху Ницше (1844-1900), который за десять лет до того пришел к тем же выводам другими средствами. Немецкий философ верил в то, что стали называть "вечным возвращением", в идею, согласно которой Вселенная проходит через одно и то же состояние снова и снова, так что вся история существования точно повторяется бесконечное число раз.

ЭРНСТ ЦЕРМЕЛО

Самый значительный вклад немецкого математика Эрнста Цермело связан с аксиоматизацией теории множеств.

Теория множеств — это область математики, изучающая свойства множеств, и уже первые ее версии содержали парадоксы. Так, она давала противоречивые ответы на вопрос:

"Содержит ли множество всех множеств само себя?" Аксиоматизация состоит в том, чтобы сформулировать ряд утверждений, называемых аксиомами, которые не требуют доказательства.

На их основе можно вывести остальной теоретический корпус. Цермело создал аксиоматическую систему для теории множеств, которая была лишена противоречий. Его система, измененная несколькими годами позже Абрахамом Френкелем (1891-1965), породила систему Цермело — Френкеля, которая используется по сегодняшний день.

Утверждение Ницше не имело мистической природы и базировалось не на призрачных аргументах; он несколько лет изучал физику, чтобы обосновать свой принцип. И пусть его доказательство не обладает математической строгостью, как более позднее доказательство Пуанкаре, в общих чертах оно верно. Некоторые авторы утверждают, что на самом деле оно настолько же справедливо, как и доказательство Пуанкаре, но в распоряжении Ницше не было математических инструментов, необходимых для доказательства гипотезы, хотя не исключено, что это преувеличение. Ницше рассматривал вечное возвращение так:

"Если Вселенную можно расценивать как определенное количество энергии, как определенное число центров энергии, (...J то из этого можно сделать вывод, что Вселенная должна пройти через исчисляемое количество сочетаний [...]. В бесконечности, рано или поздно, все возможные сочетания должны были бы возникнуть; причем бесконечное число раз".