Выбрать главу

Совершенно допустимо описывать воздух и в терминах макроскопического флюида, имеющего такие параметры, как температура и плотность. Существуют уравнения, описывающие, как отдельные молекулы сталкиваются друг с другом и изменяют траектории со временем; также есть отдельный набор уравнений, демонстрирующих, как изменяются во времени свойства флюида. При этом могу вас обнадёжить: чтобы найти решение, можно и не быть столь умным, как демон Лапласа, — с такой задачей вполне справляются обычные компьютеры. Метеорологи и авиаинженеры решают такие уравнения каждый день.

Два способа представления воздуха: в виде дискретных молекул и в виде сплошного флюида

Итак, «флюидное» и «молекулярное» описания — два разных способа рассуждения о воздухе, причём оба они — как минимум в определённых обстоятельствах — весьма точно и информативно описывают свойства воздуха. Этот пример иллюстрирует ряд аспектов, которые обычно характерны для дискуссий об эмерджентности.

   • В различных сюжетах или теориях применяется совершенно разная терминология. Хотя эти теории и описывают одну и ту же базовую реальность, они представляют собой различные онтологии. В рамках одной из теорий мы говорим о плотности, давлении и вязкости флюида, в рамках другой — о положении и скорости отдельных молекул. Для каждой теории свойственно своё тщательно подобранное множество составляющих — объектов, свойств, процессов, взаимосвязей, и эти составляющие могут радикально различаться от теории к теории, несмотря на то что все они «истинны».

   • У каждой теории есть собственная область применения. «Флюидное» описание будет неприменимо, если количество молекул в рассматриваемом объёме столь невелико, что важны свойства отдельных молекул, а не их множеств. Молекулярное описание имеет сравнительно широкую область применения, но тоже действует не всегда. Теоретически можно упаковать в достаточно небольшой объём пространства такое количество молекул, чтобы они образовали чёрную дыру — в таком случае молекулярная терминология уже будет неприемлема.

   • Каждая теория в своей области применения автономна — полна и самодостаточна, не зависит ни от какой другой теории. Если мы говорим о флюиде, то описываем воздух в терминах плотности, давления и т. д. Указав эти величины, можно ответить на любой вопрос о воздухе в рамках этой теории. В частности, нам вообще не потребуется затрагивать какие-либо вопросы о молекулах и их свойствах. Исторически нам приходилось рассуждать о давлении воздуха и скорости ветра задолго до того, как мы узнали о том, что воздух состоит из молекул. Аналогично, рассуждая о молекулах, мы не упоминаем такие термины, как «давление» или «вязкость», — подобные концепции в данном контексте просто неприменимы.

Здесь сделаем важный вывод: теории могут опираться на совершенно несхожие идеи, но при этом правильно описывать один и тот же базовый материал. В дальнейшем этот момент будет принципиален. Организм может быть живым, хотя и состоит из неживых атомов. Животное может обладать сознанием, хотя его отдельные клетки и лишены сознания. Люди могут делать выбор, даже несмотря на то что концепция «выбора» неприменима к тем компонентам, из которых они состоят.

* * *

Если у нас есть две различные теории и они обе правильно описывают одну и ту же базовую реальность, то они должны быть связаны друг с другом и взаимно непротиворечивы. Иногда эти отношения просты и прозрачны, в других случаях приходится просто поверить, что они существуют.

Случай с динамикой флюида, возникающей из совокупности молекул, восхитительно прост. Одна теория может быть выведена непосредственно из другой благодаря процессу, именуемому огрублением. Можно напрямую соотнести одну теорию (молекулы) с другой (флюид). Конкретное состояние в первой теории — список всех молекул, их положений и скоростей — соответствует конкретному состоянию во второй, учитывающему плотность, давление и скорость флюида в каждой его точке.