Большинство тяжелых элементов в нашем организме возникло в результате термоядерных реакций в звездах.
Звезды могут использовать в качестве топлива даже более тяжелые атомы — вплоть до определенного предела, установленного законами физики и химии. Этот пограничный элемент — железо — занимает специфическое место в периодической таблице. Ядра более легких элементов могут сливаться, выделяя огромную энергию. Более тяжелые ядра тоже могут сливаться, но их структура такова, что при этом выделяется значительно меньше энергии. В результате для слияния этих ядер требуется затратить больше энергии, чем выделяется в реакции. Если бы, к примеру, в основе работы ядерного реактора лежало слияние ядер железа, такой реактор давал бы меньше энергии на выходе, чем нужно было бы затратить на его работу.
Это правило неприятно для звезд, зато для нас оно чрезвычайно выгодно. По мере того как звезды потребляют легкие элементы и постепенно продвигаются дальше по периодической таблице, в их центре накапливается железо. По мере расходования топлива и накопления железа термоядерные реакции ослабевают, и звезды начинают излучать меньше тепла. При определенных условиях ядро железа может поглощать энергию (своеобразное обращение ядерного взрыва). Это может запускать мощную цепную реакцию, заканчивающуюся взрывом, в ходе которого за считанные секунды может выделиться больше энергии, чем звезды вроде нашего Солнца способны выделить за все время своего существования.
Такой взрыв является одним из механизмов образования сверхновых звезд (второй механизм — столкновение звезд). Принцип действия сверхновых звезд напоминает принцип действия устройства Теллера — Улама: энергия одного взрыва запускает термоядерные реакции нового типа. Помните, мы говорили о термоядерных реакциях между элементами тяжелее железа? Сверхновые звезды выделяют так много энергии, что в них эти энергозатратные реакции могут иметь место. Все элементы тяжелее железа, такие как кобальт и цезий в наших телах, происходят из сверхновых звезд.
Для нас это очень важно. Взрывы сверхновых звезд распространяют атомы мертвой звезды по всей галактике. Это один из механизмов перемещения атомов между звездами.
Круговорот элементов во Вселенной. Водород внутри нас образовался в момент Большого взрыва, а другие элементы поступают от звезд и сверхновых звезд. Но однажды элементы, составляющие наше тело, вновь рассеятся во Вселенной.
Таким образом, мельчайшие частицы наших тел имеют столь же долгую историю, как сама Вселенная. Вскоре после Большого взрыва возникли атомы водорода, а позднее их рекомбинация начала приводить к образованию более тяжелых элементов, из которых складывались звезды и сверхновые звезды.
В небе, как в лесу, происходит постоянный круговорот веществ. Во Вселенной столько звезд, постоянно производящих и выделяющих химические элементы, из которых могут формироваться новые звезды, что все атомы, достигшие нашей планеты, раньше уже были частью множества разных солнц. Каждая галактика, звезда или живое существо является временным владельцем частиц, прошедших через рождение и смерть множества существ и объектов. Частицы внутри нас миллиарды лет путешествовали по Вселенной и еще долго после нашей смерти и исчезновения Земли будут частицами других миров.
Глава 3
Под счастливой звездой
С момента Большого взрыва возникло и исчезло множество звезд и галактик. Мы — я имею в виду Солнечную систему — появились сравнительно недавно. Для объяснения происхождения нашего уголка Вселенной требуются неординарные идеи и сложная наука. Шведский философ Эммануил Сведенборг обдумывал этот вопрос всю жизнь. Он родился в 1688 году и большую часть прожитых им восьмидесяти лет считал необходимым обдумывать по одной важной проблеме каждый день. В молодости он был натурфилософом, пытавшимся интуитивно проникнуть в суть вещей. Он, например, логически пришел к заключению о существовании нервов и нервной системы. Обратив свой взор к космосу, Сведенборг предложил теорию происхождения Солнечной системы. Он считал, что Солнце образовалось из облака газа и пыли, сконденсировавшегося в результате коллапса. Когда Солнце обрело форму, часть первичной пыли осталась вращаться вокруг молодой звезды в виде диска из мельчайших частиц. Со временем часть этого облака образовала планеты Солнечной системы. Эта идея не получила развития до тех пор, пока двадцать лет спустя, в 1755 году, философ Иммануил Кант тоже не занялся изучением происхождения Солнечной системы. Созданная им теория очень походила на теорию Сведенборга.