1 Теоретически она выше, но влияние атмосферы при наземных наблюдениях резко ухудшает ситуацию. — Примеч. авт.
32
— Чем и как изучают Вселенную —
астроклимата (не говоря уже о таком «мелком удобстве», как возможность использовать радиотелескоп круглосуточно, а не только ночью). Если требуется еще большее разрешение, необходимо удлинить базу. Интерферометрические наблюдения со сверхдлинными — межконтинентальными и даже космическими — базами давно уже перестали быть чем-то из ряда вон выходящим.
Между прочим без радиоастрономии мы вряд ли сумели бы понять процессы, связанные с рождением звезд, не говоря уже о пульсарах, квазарах, межзвездной среде... Но об этом — ниже.
Возникает вопрос: можно ли осуществить интерферометрию не в радиодиапазоне с длинами волн от миллиметров до метров, а в иных диапазонах электромагнитных колебаний, скажем, в оптическом, где длины волн — доли микрон? Задача оказалась крайне сложной, но решаемой. Четыре 8,2-м зеркала оптического телескопа VLT (рис. 8) могут работать в режиме интерферометра.
2 Вселен
33
— Часть I —
Предел мечтаний для астронома-наблюдателя — вести непрерывные наблюдения всего неба с высокой чувствительностью, хорошим разрешением и во всех диапазонах электромагнитных волн. Но мечты мечтами, а практика, как известно, вещь жестокая. Если мы захотим вести наблюдение неба в инфракрасном (ИК) или ультрафиолетовом (УФ) диапазоне, то сразу столкнемся с проблемой: поглощение волн определенных частот молекулами атмосферы столь велико, что обычно говорят об «окнах прозрачности» вне этих «провалов». Еще хуже в рентгеновском и гамма-диапазонах. Наземные наблюдения тут вообще невозможны. А между тем наблюдения вне оптического диапазона крайне полезны — например, ИК-излучение практически без помех проходит сквозь облака галактической пыли, делающие объекты, находящиеся в них или за ними, ненаблюдаемыми в оптическом диапазоне. Еще один пример: открытие с помощью международного астрономического спутника IRAS кольца или диска из твердых частиц, окружающего одну из ярчайших звезд — Вегу.
Начиная с 70-х годов прошлого века на околоземную орбиту выведено уже немало автоматических обсерваторий, оснащенных телескопами соответствующего диапазона. Срок их службы, как правило, невелик (несколько лет), и случается, что старый аппарат выходит из строя раньше, чем ему на смену будет запущен новый, более совершенный. Что поделать, даже NASA сплошь и рядом вынуждено выбирать из нескольких перспективных проектов один-два, откладывая остальные в долгий ящик...
В качестве примера остановимся на рентгеновской обсерватории «Чандра», выведенной в 1999 году на высокую орбиту с помощью злосчастного шаттла «Колумбия». Обладая способностью получать рентгеновские изображения в диапазоне энергий квантов 0,1-10 кэВ, она превосходит по чувствительности своих предшественников («Эйнштейн» и ROSAT) в десятки раз, а разрешающая способность лишь в 5 раз хуже, чем у Космического телескопа им. Хаббла. Любопытна конструкция
34
— Чем и как изучают Вселенную —
рентгеновского телескопа. Поскольку рентгеновское излучение достаточно эффективно отражается лишь при падении под очень малым углом к поверхности, рентгеновские телескопы состоят из двух стоящих друг за другом зеркал почти цилиндрической формы (точнее, фрагментов параболического и гиперболического зеркал). Их собирающая поверхность весьма мала, но, поскольку угол между лучом и поверхностью также крайне мал, ее увеличивают, вкладывая друг в друга несколько пар зеркал на манер «матрешки». «Чандра» имеет 4 пары зеркал из специального стекла, покрытых слоем иридия. Собирающая площадь зеркал составляет «скромную» величину в lioo см2. Изображение фиксируется на ПЗС-матрицы. Кроме собственно телескопа, «Чандра» несет дифракционные решетки высокой и низкой энергии, датчик электронов, протонов и альфа-частиц.
Гамма-телескопы не имеют зеркал — нет такой поверхности, которая могла бы отражать и фокусировать гамма- лучи. Приемниками очень жестких квантов обычно служат сцинтилляционные датчики и трековые детекторы,
Отдельная тема — нейтринная астрономия. Нейтрино — частица, предсказанная в 1930 году Вольфгангом Паули, — обладает чрезвычайно неприятным, с точки зрения наблюдателя, свойством: она практически не взаимодействует с материей. В одну секунду через каждый квадратный сантиметр поверхности, перпендикулярной солнечным лучам, проходит порядка 6о млрд нейтрино, чего мы совершенно не замечаем. К счастью, выражение «практически не взаимодействует» означает, что иногда, крайне редко, взаимодействие нейтрино с веществом все же происходит и его можно зафиксировать. Обычный нейтринный телескоп (который правильнее назвать нейтринным Детектором) представляет собой бассейн с дистиллированной водой объемом в сотни или даже тысячи кубометров, расположенный глубоко под землей для экранирования от наземных помех и космических частиц иной природы. Каждое взаимо- Деиствие нейтрино с электроном, входящим в молекулу воды,