Выбрать главу

Границу, отделяющую область действия квантовой гравита­ции от области, где мы можем применять уже разработанный аппарат современной физики, маркируют так называемые план- ковские величины, представляющие собой комбинацию миро­вых констант — скорости света, постоянной тяготения и посто­янной Планка. О планковских величинах мы рассказывали в разделе, посвященном черным дырам, здесь лишь уточним, что планковская длина составляет примерно ю~33 см, а планковское время — около Ю“43 с.

332

Таким образом, размеры Вселенной в планковское время составляли, скорее всего, величину, сравнимую с планковской ^иной. Можно показать, что за промежуток времени с план- к0вского по сегодняшний размеры Вселенной увеличиваются примерно в ю30 раз — т. е. на данный момент времени размеры Вселенной должны были бы составлять менее миллиметра!

И, наконец, последняя проблема, тесно связанная с пробле­мой размера Вселенной, — проблема происхождения начальных возмущений, приведших к образованию наблюдаемой структу­ры Вселенной. Ведь величина начальных квантовых флюктуа­ций (которые должны были непременно существовать, исходя из законов квантовой физики) тем не менее явно недостаточна, чтобы за время жизни Вселенной вырасти настолько, чтобы при­вести к образованию гравитационно-связанных объектов типа галактик и их скоплений.

Как видим, вопросов оставалось немало, один другого серьез­ней и принципиальней. Тем замечательней и удивительней, что все их удалось решить в стиле охоты барона Мюнхгаузена на уток — одним «выстрелом».

Чтобы объяснить сущность решения, вернемся к проблеме физического вакуума, о котором мы немного рассказали во все том же разделе, посвященном черным дырам. Само существова­ние физического вакуума — точнее то, что он является отнюдь не абсолютной пустотой, а наинизшим (но не нулевым!) состояни­ем квантовых полей, — сомнений не вызывает. Об этом говорит и так называемый лэмбовский (по имени первооткрывателя — американского физика Уиллиса Лэмба) сдвиг уровней энергии атома, обусловленный взаимодействием электронов с вирту- ЭДьными частицами, и экранировка заряда протона на близких Расстояниях, и, наконец, «рождение» самих виртуальных частиц («перевод» их в реальные) при «снабжении» их достаточной

энергией.

Но для целей нашего рассказа важным является уравнение с°стояния вакуума, т. е. взаимосвязь между его давлением и ^отностью энергии. Так вот, давление вакуума является отри­

333

цательным — трудно представимая в повседневной жизни кар­тина. Впрочем, кое-какие аналогии можно придумать — напри­мер, растянутую со всех сторон стальную болванку.

Однако давление вакуума мало того что отрицательное — так еще и равно по модулю его плотности энергии. А вот такого в земных условиях воспроизвести никак нельзя.

Следствием такого уникального уравнения состояния явля­ются два обстоятельства: во-первых, плотность вакуума при рас­ширении не меняется; а во-вторых, он «вызывает» силы оттал­кивания, т. е. действует как эффективная антигравитация1.

И совместное действие этих двух замечательных свойств вакуума может обеспечить экспоненциальный рост размеров Вселенной — если бы его плотность энергии была бы достаточно большой. Кстати, малая (судя по всему) плотность энергии того физического вакуума, с которым мы «имеем дело», является одной из до сих пор не решенных загадок.

Но что, если предположить, что в начальные моменты жизни Вселенной плотность энергии вакуума была огромна?

Судя по всему, одним из первых, кто начал рассматривать этот вопрос, был советский ученый Э.Б. Глинер — еще в 1965 году. Далеко не все эту гипотезу приняли, встречалась она и с весь­ма резкой критикой, в том числе и со стороны выдающихся уче­ных. Тем не менее были и сторонники, среди которых имелись ученые не менее выдающиеся. На протяжении 70-х годов гипо­теза постепенно углублялась и прорабатывалась, до стадии тео­рии ей оставалось совсем немного. В 1978 году Андрей Линде и Геннадий Чибисов, а в 1979-1980 годах Андрей СтаробинскиЙ подошли к этому почти вплотную.

Но решающий шаг сделан в январе 1981 года, когда амери­канский космолог Алан Гус опубликовал статью «Инфляционная Вселенная: возможное решение проблемы горизонта и плоскост-

1 Самые догадливые читатели, думаем, уже заподозрили связь физиче- ского вакуума и лямбда-члена Эйнштейна. Но об этом — немного пого дя. — Примеч. авт.

334

яоСти». И с его же легкой руки новая теория получила название «теория инфляции»1.