В начале XIX века молодой мастер-оптик Йозеф фон Фраунгофер изготовил спектроскоп, с помощью которого заметил, что в солнечном спектре помимо семи основных цветов присутствуют таинственные темные линии. Таковых линий Фраунгофер насчитал 574. Сжигая или прокаливая в пламени различные химические элементы, Фраунгофер заметил, что разным элементам соответствуют разные темные линии спектра. Не было ничего естественнее, чем объяснить соответствующие темные линии солнечного спектра присутствием на Солнце соответствующих химических элементов.
Кстати, второй по распространенности во Вселенной элемент назван гелием (солнечным) как раз из-за того, что впервые он
38
— Чем и как изучают Вселенную — был обнаружен на Солнце — разумеется, спектроскопическим
методом.
В дальнейшем ученые принялись за спектрографию планет, комет и все более слабых звезд и туманностей — это было лишь вопросом чувствительности аппаратуры. Спектры стали фотографировать и калибровать. Оказалось, что все темные линии обычно бывают сдвинуты либо в красную, либо в фиолетовую сторону. Объяснение пришло с открытием эффекта Доплера — увеличение длины волны излучения при удалении объекта от наблюдателя (красное смещение) и уменьшение длины волны при приближении объекта к наблюдателю (фиолетовое смещение). Таким образом, стало возможно точно определять скорость небесного объекта относительно Земли — точнее, радиальную составляющую вектора скорости, но и это уже много. К примеру, оценка расстояния до самых удаленных галактик производится только по их красному смещению и связи между ним и расстоянием до галактики, ибо более надежных методов пока не существует...
Но как поведут себя темные линии спектра, если объект — допустим, звезда — не просто летит куда-то, но еще и вращается вокруг своей оси? В этом случае часть объекта будет приближаться к нам, что вызовет фиолетовое смещение, а другая часть — удаляться от нас, из-за чего смещение будут красным. В сумме это приведет к размытию спектральных линий, и по степени размытия можно будет судить о скорости вращения объекта. Именно так измеряются, например, скорости вращения звезд. В наше время все это для астрономов более чем тривиально, на уровне студенческих лабораторных работ.
Итак, химический состав (включая ионы и изотопы) космических объектов и среды, радиальная скорость, скорость вращения... что еще?
Еще природа излучения. Распределение его спектральной плотности по диапазону частот покажет нам, имеем ли мы дело с Шиловым излучением или с каким-нибудь иным. Например, излучение расширяющихся оболочек Сверхновых звезд (типа
39
Крабовидной туманности) преимущественно не тепловое, а син- хротронное, вызванное движением заряженных релятивистских частиц в магнитном поле. Радиоспектр Крабовидной туманности показывает это как нельзя лучше. Имеются и другие источни- ки нетеплового излучения, скажем, космические мазеры, легко идентифицируемые опять-таки по спектрам.
И еще простой пример. Допустим, звезда или группа звезд погружена в светлую туманность. Как узнать природу светимости этой туманности? Является ли ее свечение результатом возбуждения атомов или же наблюдается простое отражение туманностью света звезд? Такая ситуация имеет место в Плеядах. Умозрительно было понятно, что ярчайшие звезды Плеяд недостаточно горячи для первого предположения, но известно, сколь часто умозрительные предположения приводят к ошибкам. Зато спектр туманности раскрыл ее природу «на раз» — он оказался звездным, конечно, с наложением линий поглощения, определяемым туманностью. Вывод: это не эмиссионная, а чисто отражательная туманность, да еще не имеющая с Плеядами ничего общего, кроме того, что туманность и скопление случайно встретились в пространстве.
Можно привести еще много примеров чрезвычайной полезности спектральных исследований, но лучше мы перейдем от описаний инструментария к астрономической конкретике.
ЧАСТЬ II
БЛИЖАЙШИЕ
ОКРЕСТНОСТИ
Нравится это нам или нет, но мы живем среди отходов — отходов «производства» звезд и даже сами из них состоим. По современным представлениям, наше Солнце — весьма типичная звезда — образовалось чуть менее 5 млрд лет назад из газопылевой материи. Сжатие исходного протозвездного облака под действием собственной гравитации не было равномерным — центральные области газово-пылевого сгустка сжимались быстрее периферии. Когда в центре сгустка загорелась протозвезда, давление света сначала уравняло силу тяготения для падающей материи, а затем начало выталкивать периферийные газ и пыль, которым «не повезло» попасть в звезду. Под действием выталкивающей силы легкие элементы мигрировали дальше от Солнца и образовали газовые планеты-гиганты Юпитер, Сатурн, Уран и Нептун, а также великое множество преимущественно ледяных тел; тяжелые же элементы остались во внутренних областях Солнечной системы и после ряда драматических коллизий слиплись в планеты земной группы: Меркурий, Венеру, Землю, Марс и Главный пояс астероидов. К началу формирования планет остатки газово-пылевого сгустка превратились вследствие вращения в протопланетный диск. Именно поэтому орбиты планет лежат более или менее в одной плоскости.