Выбрать главу

В начале XIX века молодой мастер-оптик Йозеф фон Фраун­гофер изготовил спектроскоп, с помощью которого заметил, что в солнечном спектре помимо семи основных цветов присутству­ют таинственные темные линии. Таковых линий Фраунгофер на­считал 574. Сжигая или прокаливая в пламени различные хими­ческие элементы, Фраунгофер заметил, что разным элементам соответствуют разные темные линии спектра. Не было ничего естественнее, чем объяснить соответствующие темные линии солнечного спектра присутствием на Солнце соответствующих химических элементов.

Кстати, второй по распространенности во Вселенной элемент назван гелием (солнечным) как раз из-за того, что впервые он

38

— Чем и как изучают Вселенную — был обнаружен на Солнце — разумеется, спектроскопическим

методом.

В дальнейшем ученые принялись за спектрографию планет, комет и все более слабых звезд и туманностей — это было лишь вопросом чувствительности аппаратуры. Спектры стали фото­графировать и калибровать. Оказалось, что все темные линии обычно бывают сдвинуты либо в красную, либо в фиолетовую сторону. Объяснение пришло с открытием эффекта Доплера — увеличение длины волны излучения при удалении объекта от наблюдателя (красное смещение) и уменьшение длины волны при приближении объекта к наблюдателю (фиолетовое смеще­ние). Таким образом, стало возможно точно определять скорость небесного объекта относительно Земли — точнее, радиальную составляющую вектора скорости, но и это уже много. К примеру, оценка расстояния до самых удаленных галактик производится только по их красному смещению и связи между ним и расстоя­нием до галактики, ибо более надежных методов пока не суще­ствует...

Но как поведут себя темные линии спектра, если объект — до­пустим, звезда — не просто летит куда-то, но еще и вращается во­круг своей оси? В этом случае часть объекта будет приближаться к нам, что вызовет фиолетовое смещение, а другая часть — уда­ляться от нас, из-за чего смещение будут красным. В сумме это приведет к размытию спектральных линий, и по степени размы­тия можно будет судить о скорости вращения объекта. Именно так измеряются, например, скорости вращения звезд. В наше время все это для астрономов более чем тривиально, на уровне студенческих лабораторных работ.

Итак, химический состав (включая ионы и изотопы) косми­ческих объектов и среды, радиальная скорость, скорость враще­ния... что еще?

Еще природа излучения. Распределение его спектральной плотности по диапазону частот покажет нам, имеем ли мы дело с Шиловым излучением или с каким-нибудь иным. Например, излучение расширяющихся оболочек Сверхновых звезд (типа

39

Крабовидной туманности) преимущественно не тепловое, а син- хротронное, вызванное движением заряженных релятивистских частиц в магнитном поле. Радиоспектр Крабовидной туманности показывает это как нельзя лучше. Имеются и другие источни- ки нетеплового излучения, скажем, космические мазеры, легко идентифицируемые опять-таки по спектрам.

И еще простой пример. Допустим, звезда или группа звезд погружена в светлую туманность. Как узнать природу светимо­сти этой туманности? Является ли ее свечение результатом воз­буждения атомов или же наблюдается простое отражение ту­манностью света звезд? Такая ситуация имеет место в Плеядах. Умозрительно было понятно, что ярчайшие звезды Плеяд недо­статочно горячи для первого предположения, но известно, сколь часто умозрительные предположения приводят к ошибкам. Зато спектр туманности раскрыл ее природу «на раз» — он оказался звездным, конечно, с наложением линий поглощения, опреде­ляемым туманностью. Вывод: это не эмиссионная, а чисто отра­жательная туманность, да еще не имеющая с Плеядами ничего общего, кроме того, что туманность и скопление случайно встре­тились в пространстве.

Можно привести еще много примеров чрезвычайной полез­ности спектральных исследований, но лучше мы перейдем от описаний инструментария к астрономической конкретике.

ЧАСТЬ II

БЛИЖАЙШИЕ

ОКРЕСТНОСТИ

Нравится это нам или нет, но мы живем среди отходов — от­ходов «производства» звезд и даже сами из них состоим. По со­временным представлениям, наше Солнце — весьма типичная звезда — образовалось чуть менее 5 млрд лет назад из газопы­левой материи. Сжатие исходного протозвездного облака под действием собственной гравитации не было равномерным — центральные области газово-пылевого сгустка сжимались бы­стрее периферии. Когда в центре сгустка загорелась протозвезда, давление света сначала уравняло силу тяготения для падающей материи, а затем начало выталкивать периферийные газ и пыль, которым «не повезло» попасть в звезду. Под действием выталки­вающей силы легкие элементы мигрировали дальше от Солнца и образовали газовые планеты-гиганты Юпитер, Сатурн, Уран и Нептун, а также великое множество преимущественно ледя­ных тел; тяжелые же элементы остались во внутренних обла­стях Солнечной системы и после ряда драматических коллизий слиплись в планеты земной группы: Меркурий, Венеру, Землю, Марс и Главный пояс астероидов. К началу формирования пла­нет остатки газово-пылевого сгустка превратились вследствие вращения в протопланетный диск. Именно поэтому орбиты пла­нет лежат более или менее в одной плоскости.