Мы с Джорджем Смутом очень рады, что приборы СОВЕ оказались настолько чувствительны, что позволили реконструировать карты фонового микроволнового излучения, которые с полной убедительностью продемонстрировали, что оно анизотропно. И, конечно, мы полностью признаем заслуги своих предшественников. Они получили много ценных результатов, но наши все же оказались лучше».
Увы, поезд для наших ученых уже ушел...
Нам осталось рассказать про последнее великое наблюдательное открытие, в гипотетическом «матче» между теоретиками и наблюдателями пока отдавшее победу последним. И открытием этим является обнаружение факта ускоренного расширения Вселенной — причем не в те самые, «стародавние» «инфляционные» времена, а сейчас, в современную стадию эволюции Вселенной.
Совершено открытие было в 1998 году практически одновременно двумя независимыми группами ученых — австралийской, возглавляемой Брайаном Шмидтом, и американской, возглавляемой Солом Перлмутгером. Каким образом они это сделали? Основой открытия стало наблюдение за изменением блеска Сверхновых типа 1а в зависимости от расстояния до них. Исходя из современных представлений, Сверхновые такого типа являются так называемыми стандартными свечами, т. е. их светимость (энергия, выделяющаяся в единицу времени) примерно1 одна и та же для всех Сверхновых. Таким образом, зная светимость и видимую звездную величину Сверхновых типа 1а, мы можем получить расстояние до них.
В современной космологии Сверхновые типа 1а заняли место, во времена Хаббла принадлежавшее цефеидам, — ведь на расстояниях, актуальных сегодня, увидеть цефеиды в столь далеких галактиках нельзя в принципе. Тут могут помочь только Сверхновые с их огромными энергиями, выделяемыми при вспышке.
Для Сверхновых можно построить диаграмму «видимая звездная величина — красное смещение»2, на которой, как ожидалось, Сверхновые должны были «лечь» примерно на одну
Мы опускаем различные тонкости, не влияющие на понимание резуль- тата. — Примеч. авт.
То есть расстояние. — Примеч. авт.
345
прямую линию. В действительности, однако, картина оказалась иной: с увеличением красного смещения «прямая» все сильнее и сильнее «загибалась» вверх (напомним, что чем больше видимая звездная величина, тем слабее блеск). А так как мы исходим из предположения, что Сверхновые — «стандартные свечи», то этот загиб мог означать только одно, а именно, что далекие Сверхновые — еще дальше от нас, чем предполагалось. И чем более далекой являлась Сверхновая, тем сильнее был эффект.
Вот на анализе таких данных и сделали заключение об ускоренном расширении Вселенной. И, конечно, одним из основных кандидатов на роль «двигателя» этого расширения стала космологическая постоянная — лямбда-член Эйнштейна.
История, таким образом, совершила полный круг.
Не следует, однако, думать, что Сверхновые — это единственный аргумент в пользу его существования, это не так. В противном случае сильно усилились бы позиции критики, связанной с сомнением в правомочности назначения Сверхновых на роль «стандартных свечей». Ведь, как мы уже знаем, чем больше красное смещение, тем глубже мы уходим в прошлое Вселенной. И это совсем не очевидный факт, что химический состав Сверхновых в близких галактиках такой же, как у Сверхновых в галактиках далеких. А ведь светимость Сверхновой вполне может зависеть от ее химсостава — собственно, как это и получается в компьютерных моделированиях вспышки.
Но, повторим, Сверхновые — не единственный аргумент. Все аргументы мы перечислять не будем, расскажем лишь еще об одном. Современные исследования анизотропии реликтового излучения (например, выполненные на спутнике WMAP, запущенном в 2001 году и до сих пор передающем ценнейшую научную информацию) показывают, что полная плотность нашей Вселенной1 с достаточно большой точностью равна критической-
1 Включая вклад барионного вещества, темной материи, излучения, воз можный вклад массивных нейтрино, вклад космологической постояй ной. — Примеч. авт.
346
данные пятого года миссии WMAP совместно с самыми современными данными по измерению постоянной Хаббла (HST Key project—ключевой проект на Космическом телескопе им. Хаббла) дня параметра полной плотности Вселенной П дают значение, возможное отличие которого от единицы (в ту и в другую сторону) заключается лишь во втором знаке после запятой. С другой стороны, данные по анизотропии реликтового излучения с достаточно большой точностью позволяют измерить полную плотность материи (барионной и темной). Впрочем, точнее будет сказать, что измеряется некая комбинация параметра плотности материи и постоянной Хаббла. Но постоянную Хаббла мы знаем из того же HST Key Project — следовательно, можем получить и значение параметра плотности материи. А зная параметр плотности материи и то, что параметр полной плотности Вселенной равен единице, — получаем долю космологической постоянной.