Выбрать главу

То же самое происходит и с ракетой: газы, образующиеся в ней от горения пороха, стремительно вытекают из отверстия трубки, а сама трубка отталкивается при этом в обратном направлении. Будет ли вокруг ракеты воздух или нет — зажженная ракета все равно полетит, в пустоте даже лучше, чем в атмосфере, потому что воздух служит лишь помехой ее движению.

Чтобы перейти от ракеты к ракетному кораблю-звездолету, вообразите себе исполинскую ракету с каютой для пассажиров, с огромным запасом горючего вещества и с особым устройством для управления горением. Каюта должна быть устроена примерно так, как в современной подводной лодке: в ней должны находиться приборы для замены израсходованного кислорода свежим, запасы пищи, питья, набор инструментов для ориентирования и прочее.

Проект пассажирского звездолета Оберта с каютой.

Теория показывает, что для одоления земного притяжения звездолет должен направиться в мировое пространство со скоростью не менее 12 километров в секунду. Самые мощные артиллерийские орудия не сообщают своим снарядам такой скорости. Можно ли надеяться достичь ее для ракеты?

Оказывается, безусловно можно, если снабдить ракету достаточным количеством надлежаще выбранного горючего. Теория ракеты доказывает, что чем больше сгорело в ракете горючего и чем с большей скоростью вытекают из трубы продукты горения, тем стремительнее движется сама ракета. К скорости, полученной в предыдущую секунду, прибавляется скорость, развиваемая в следующую; кроме того, по мере сгорания запаса горючего, ракета становится легче и потому приобретает от одного и того же напора газов большую скорость. Если к тому же взрывные газы сами вытекают весьма стремительно, то ракета к концу сгорания способна накопить значительную скорость. Можно в точности вычислить, какое количество какого горючего должно быть сожжено в ракете данного веса, чтобы накопить ту или иную желаемую скорость. Рассчет дает твердое основание утверждать, что при надлежащем выборе горючего требуемая для звездоплавания скорость безусловно может быть достигнута.

Многие думают, что выгоднее всего заряжать ракету сильно взрывчатыми веществами. Но это — ошибочное мнение. Порох для звездолета прежде всего чрезвычайно опасен: при зажигании может сразу взорваться весь его запас и уничтожить межпланетный корабль-звездолет.

Но это не единственная причина, из-за которой деятели звездоплавания решили совершенно отказаться от употребления пороха и обратиться к другим веществам. Скорость, с какою вытекают газообразные продукты горения пороха, недостаточно велика для надобностей звездоплавания. Вопреки распространенному мнению взрывчатые вещества освобождают при горении меньше энергии, нежели такие вещества, как водород, нефть, бензин, сгорающие в кислороде.

Поэтому изобретатели звездолетов предусматривают использование лишь таких веществ, как жидкий водород, нефть, бензин, спирт, сжигаемых в смеси с жидким кислородом. Водород и кислород нужно брать в жидком, а не газообразном виде, для того чтобы не пришлось пользоваться черезчур тяжелыми, толстостенными резервуарами-газохранилищами.

III. Ближайшие шаги.

Итак, задача сводится к сооружению ракеты с жидким горючим взамен пороха. До самого последнего времени такие ракеты существовали только в чертежах изобретателей. На практике они испытаны не были. И только сейчас, когда я пишу эти строки (январь 1930 г.), в разных местах Европы идет лихорадочная работа по сооружению первых ракет такой конструкции. Разные промышленные предприятия в секрете друг от друга стремятся изготовить и пустить первую ракету с жидким горючим: аэропланный завод Юнкерса, трест заводов Сименса, Всеобщая Компания Электричества, ракетная лаборатория профессора Оберта.

 Проф. Герман Оберт, глава германских звездоплавателей.

Мне известны лишь планы Оберта. Он сооружает две ракеты — крылатую и бескрылую — примерно в рост человека, обе из крайне легкого нового сплава «электрона» (в 1½ раза легче алюминия). Горючим будет служить бензин и жидкий кислород. Ракеты предназначаются для предварительного испытания пригодности конструкции и должны подняться ввысь километров на 20. Если испытания будут успешны, то за ними последует уже более крупная ракета с длиной маршрута до 80—100 километров. Работы ведутся столь быстрым темпом, что ко времени, когда эти строки будут напечатаны, пробный взлет ракет быть может уже состоится.

Пройдет однако еще немало времени, прежде чем практически будет поставлен вопрос об осуществлении первого полета на Луну.

Есть целый ряд задач, которые техника ракетного транспорта должна разрешить до этого.

Первые шаги по пути к звездоплаванию будут иметь не небесные, а земные цели. Это прежде всего под'ем небольших ракет без пассажиров, с самопишущими приборами, на высоту 70—100 километров для изучения высших, еще совершенно неисследованных слоев земной атмосферы. Видоизменением этой «метеорологической» ракеты явится ракета «фотографическая», снимающая местность с большой высоты; она найдет себе применение в военном деле. Другое видоизменение — «картографическая» ракета: пущенная над неисследованными частями земной поверхности (Африка, Гренландия и др.), она заснимет на киноленте ландшафты, которых не видел ни один человеческий глаз.

Ракетный автомобиль Опеля. В 1928 г. в Германии был проделан ряд опытов установки ракет на автомобиле в качестве двигателя. При горении ракет автомобиль мчался с огромной скоростью.

За ракетами этих трех типов последует «почтовая» ракета, также без пассажиров, могущая в полчаса перенести груз в несколько тысяч писем из Европы в Америку или обратно. Передача содержания всех этих писем по телеграфу заняла бы несравненно больше времени и обошлась бы гораздо дороже[8].

Следующим этапом ракетостроения будут аэропланы, снабженные ракетой вместо мотора. Они будут переносить пассажиров на огромные расстояния через верхние крайне разреженные слои атмосферы, развивая скорость до тысячи и более метров в секунду. Эти «ракетопланы» явятся непосредственными предшественниками пассажирских звездолетов, которые вначале будут совершать вылеты за атмосферу, не удаляясь глубоко в мировое пространство, а затем предпримут и настоящие межпланетные перелеты — на Луну, на Марс, на Венеру.

IV. Звездоплавание.

Полет на Луну в оба конца должен отнять, при наименьшем расходе горючего, около двух недель. Путешествие на Венеру и Марс — гораздо больше. Например, перелет на Венеру займет: туда около 150 дней, обратно — столько же; кроме того путешественники должны выжидать благоприятного момента для возвращения на Землю в течение 470 суток, так что все путешествие продлится около двух лет. Вспомним однако, что первые кругосветные путешествия продолжались еще дольше, и все же находились смелые моряки, отваживавшиеся их предпринимать. Найдутся несомненно и «следопыты вселенной», которые решатся совершить межпланетный перелет.

Опасности подобного путешествия при правильной организации экспедиции не так велики, как представляется с первого взгляда. Все эти опасности можно предусмотреть и обезвредить. Некоторые из них являются и вовсе мнимыми. Таковы например опасения, связываемые многими с «холодом мирового пространства». Когда ученые говорят, что температура мирового пространства близка к 270 градусам ниже нуля, то они хотят сказать, что тело, огражденное от лучей солнца и планет, приняло бы такую температуру. Отсюда однако не следует, что звездолету, непрерывно купающемуся в лучах солнца, угрожает опасность замерзнуть. Рассчет показывает, что будущим путешественникам вселенной угрожает скорее жара, нежели холод. Такой же нереальной является и опасность от так называемых космических лучей, пронизывающих мировое пространство: они настолько слабы, что не могут причинить человечеокому организму никакого вреда. Многих беспокоит возможная встреча с метеоритами. Рассчет вероятности подобного столкновения доказывает, что звездолет может странствовать в межпланетном пространстве сотни лет и не встретить ни одного метеорита.

вернуться

8

Многообещающие коммерческие перспективы ракетной океанской почты и побуждают вероятно промышленные круги Германии спешить с техническим разрешением ракетной проблемы.