Выбрать главу

Со временем теория относительности наделила гравитацию более амбициозной ролью. Масса, энергия и форма пространства-времени были объединены друг с другом в рамках одной непротиворечивой системы. Теория относительности Эйнштейна перешагнула ограничения «простого» принципа объединения гравитационных свойств тела в единственный параметр массы. Как мы увидим позднее, из нового понимания тяготения как свойства пространства-времени возникли совершенно новые неожиданные объекты, именуемые «черными дырами».

E pur, si muove[6]!

Поскольку все это я осознал спустя довольно длительное время, после того как впервые встретился с законом тяготения Ньютона, было бы нечестным притворяться, что этот закон мне никогда не нравился из-за не по годам развитой интуиции. Тогда почему? Возможно, потому, что когда закон тяготения преподают в школе, его уравнение оказывается просто бесполезным, так как школьники практически не в состоянии использовать его! Я имею в виду действительно использование с теми самыми целями, для которых он был применен Ньютоном и его последователями: предсказывать движение планет, хотя бы нашей старой доброй Земли.

Проблема выглядит простой. Нам доступны два инструмента: с одной стороны, второй закон Ньютона F = ma, с другой — закон обратных квадратов для силы, действующей между планетой и Солнцем. Гравитационная сила, с которой Солнце и Земля притягиваются друг к другу, равна:

Именно эта сила и влияет на планеты, заставляя их совершать круговое равноускоренное движение в соответствии со вторым законом Ньютона. Движение Земли в системе, состоящей только из Солнца и Земли, подчиняется уравнению:

Здесь y — ускорение Земли с учетом его направления, а d — расстояние от Земли до Солнца. Решение этого уравнения позволяет определить параметры движения Земли, форму ее орбиты и скорость в каждый момент времени, интервалы времени, когда Земля приближается или отдаляется от Солнца.

Все это, конечно, замечательно. Вот только решение данного уравнения отнюдь не так просто и требует более сложных математических инструментов, чем те, которые преподаются в старших классах школы. Поэтому в школе применение закона тяготения ограничивается упражнениями без особого практического смысла, например вычислением силы между двумя неподвижными объектами. Если предположить приближенно, что планеты движутся по круговым орбитам, решение может быть получено с помощью элементарной математики. Однако хорошо известно, что в действительности орбиты планет являются эллипсами, и, более того, в приближении круговых орбит вся сила закона пропадает впустую. Тогда уж проще предположить, что Земля связана с Солнцем веревочкой, и мы получим такое же круговое движение. Только позже, уже в университете, я узнал правильное решение такого простого на первый взгляд уравнения движения, позволяющее понять эллиптические траектории планет и комет. Как оказалось, и это знание не улучшило моего отношения к закону тяготения.

Космический хаос

Решение задачи о математическом описании движения одной планеты вокруг Солнца, известное как задача двух тел, стало одним из основополагающих столпов механики, но лично для меня оно уже не кажется чем-то особенным. В противоположность этому изучение движения всех планет Солнечной системы с учетом их взаимного тяготения и влияния друг на друга поставило передо мной новые неожиданные задачи. Некоторые планеты, такие как Земля, основное гравитационное влияние испытывают от Солнца, которое вызывает периодическое движение по эллиптической орбите: под этим единым воздействием орбита никогда не изменится, и каждый год Земля будет возвращаться точно в ту же точку — при условии что массы Солнца и Земли не изменятся. Это верно практически для всех планет, что движутся вдоль своих эллиптических орбит в течение вечности.

Однако планеты способны также оказывать некоторое гравитационное влияние и друг на друга. Вращение планет по своим орбитам с разными скоростями приводит к тому, что расстояния между планетами достаточно быстро изменяются, и возникающие в моменты сближения взаимные притяжения вызывают некоторые, достаточно малые, возмущения их траекторий. Вопрос в том, могут ли эти возмущения, накапливаясь с течением времени, существенно изменить базовые эллиптические траектории? Если да, то через какой промежуток времени? И останется ли возмущенное движение все еще периодическим? Или, по крайней мере, достаточно периодическим, чтобы движение планеты можно было предсказать в долгосрочной перспективе?

вернуться

6

И все-таки она вертится (итал.)