Когда я еще был ребенком, отец рассказывал мне о бассейнах для тестирования моделей кораблей — это была работа мечты в представлении маленького мальчика: я воображал себе серьезных инженеров, которые проводили долгие дни, запуская чудесные модели кораблей в красивом бассейне… Реальность оказалась менее живописной и более технической. Компьютеры, а точнее развитие численных методов, произвели революцию в этой области. При использовании численных вычислений никто больше не пытается решить уравнение с помощью формул «на бумаге». Создается модель вязкой среды, разделенной на небольшие объемы, как будто это пиксели в трехмерном пространстве. Начиная с известных заранее начальных условий, заданных скоростями жидкости в каждом «пикселе», мы рассчитываем ее эволюцию для следующего момента времени с небольшим шагом, проверяя, что уравнение с некоторой точностью выполняется для этого небольшого шага. И таким образом мы повторяем процесс много раз подряд.
Виртуальная жидкость ведет себя почти так же, как и настоящая. В ней развиваются вихри, возникают волны… Конечно, существует много различных тонкостей, связанных с численным моделированием. Например, меньший размер микрообъемов и более короткий временной шаг обеспечат б0льшую точность, но потребуют выполнения немалого числа операций на каждом расчетном шаге, следовательно, больше времени и более мощного компьютера. Еще один важный вопрос: является ли приближенное уравнение, используемое при каждом шаге, верным во всех точках микрообъема? Верно ли оно на всех временах, на каждом шаге?
Удивительная мощность современных компьютеров (несколько миллиардов операций в секунду — для настольной рабочей станции; несколько миллионов миллиардов — для крупных вычислительных центров) позволяет выполнять численные расчеты для широкого спектра приложений. Таким образом, инженеры могут понять, как полетит самолет без создания модели «в железе». Практически все условия полета можно протестировать на виртуальных моделях в самых различных вариациях перед тем, как проводить реальные испытания самолета в небе[19]. Испытания в аэродинамической трубе все еще используются, но лишь для проверки расчетов для небольшого числа конфигураций и изучения некоторых случаев, которые с трудом поддаются имитации. При достаточной вычислительной мощности можно также рассчитать поведение системы в режиме реального времени и построить настоящий симулятор полета для тестирования воздушного судна и обучения пилотов. Численные расчеты произвели революцию в работе инженеров почти во всех областях, но, возможно, в наибольшей степени — в гидродинамике. Теперь никаких неприятных сюрпризов, когда летчик-испытатель взлетает в первый раз!
Глава 8
Уравнения Максвелла
Это четыре связанных между собой уравнения, которые описывают поведение двух чисто электрических полей, обозначаемых E и D, и двух полей, связанных с магнетизмом: B и H, а также взаимодействие этих полей с электрическими зарядами р и токами J. Также второе из этих уравнений постулирует, что магнитных зарядов не существует. Они распадаются на две подсистемы уравнений: первые два, называемых уравнениями электро- и магнитостатики; и связанные между собой два последних уравнения, описывающих взаимодействие электрического и магнитного полей, например изменение магнитного поля может вызвать электрический ток.
19
Еще раз напомню, что уравнение Навье-Стокса для несжимаемой жидкости не годится для описания полета самолета: летательный аппарат летит именно потому, что воздух сжимаем! —