Выбрать главу

Что-то эдакое = То «умножить на» Это.

Намного важнее оказалось получить четкие определения основных понятий и концепций механики, чтобы описать движение тел простым соотношением. И эти определения оказались отнюдь не тривиальны…

F = ma

Идеальный, потому что неподвижный (?)

Что определяет движение? Естественным представляется вначале подумать о скорости или об изменении направления движения. Но как можно дать точные определения этим интуитивно понятным терминам?

Еще б0льшей точности в определении требует описание механического воздействия, прикладываемого к объекту. Как можно количественно оценить это воздействие? И что же такое сила?

Можно ли определить силу универсальным образом? Есть ли что-либо общее между моей рукой, которая бросает камень, и пушкой, которая стреляет ядром?

До Галилея и Ньютона движение тела описывали плохо определенным, «неформальным» языком, в котором доминировало влияние Аристотеля. Для Аристотеля неподвижность была синонимом совершенства. Объект, на который никто не действует, неподвижен. Если F = ma, то в отсутствие действующей силы ускорение равно нулю, то есть скорость не изменяется. Иными словами, объект, который движется со скоростью v и на который не действуют силы, продолжает двигаться, не отклоняясь в сторону, с постоянной скоростью.

От фонтанов до планет

Это стало настоящей революцией. Подумайте о планетах: разве они не движутся по замкнутым траекториям, которые периодически возвращают их в те же места на небе? Они могут вращаться вокруг Земли — до Николая Коперника — или вокруг Солнца — после Коперника. В любом случае они не следуют по прямой линии в пространстве, иначе они никогда бы не вернулись и не посетили нас снова. Это лишь означает, что какая-то «сила» действует на планеты. В некотором смысле планеты уже не «идеальны» по Аристотелю, они не свободны от внешнего влияния. Планеты были богами — Венерой, Марсом, Меркурием и др. Написав F = ma, люди совершили невероятно дерзкий шаг, забрав силу и свет у богов…

Однажды мне довелось увидеть поразительный рисунок: художник эпохи Возрождения изобразил на одном полотне траекторию пушечного ядра и декоративные фонтаны. Пушечное ядро поднималось по прямой линии под углом к горизонту, а затем внезапно падало вертикально вниз. Но вода, струящаяся из фонтанов, была изображена в виде плавных, изгибающихся линий — парабол, как станет известно много позже. Художник не знал, что капли в струях воды и пушечное ядро следуют по траекториям одинаковой формы. Он верно нарисовал водяные струи, поскольку они были видны ему, и траекторию пушечного ядра, так, как она представлялась ему, потому что ядро летит слишком быстро, чтобы быть видимым. Конечно, реальная траектория пушечного ядра действительно является параболой, как и траектории струй воды.

Но для чего он нарисовал столь странную треугольную траекторию? Обычное объяснение падению снарядов в то время было следующим: при выстреле пушка сообщает ядру определенное количество «толчка», затем этот «толчок» исчерпывается, а когда его не остается, идущая вверх прямая траектория останавливается, и мяч падает вертикально. Но что это за первоначальный импульс? Как этот толчок был передан ядру? Почему и как он расходуется и когда будет израсходован полностью? Чтобы правильно описать траектории струй воды, пушечных ядер и планет, нужно понять смысл концепций силы, массы и ускорения. К счастью, как только эти величины четко определены, уравнение, которое их связывает, оказывается совсем простым.

Немного ностальгии по утраченной y

В уравнении второго закона Ньютона a — это ускорение, то есть изменение скорости. Каждый водитель знает, что разгоняться — значит увеличивать скорость. Но торможение — это тоже ускорение, только со знаком минус. Скорость объекта представляет собой изменение положения тела за определенный интервал времени: чем больше скорость, тем больше изменится положение тела в пространстве за то же самое время. Ускорение — это изменение скорости объекта за определенный промежуток времени.

Это «исчисление вариаций», как его называли в XVIII в., лежит в основе всей физики. Если я изменяю влияющую величину на «самую малость», то зависимая величина изменяется при этом на «чуть-чуть» по определенному закону. Соотношение между малыми изменениями зависимых и влияющих величин — весьма скромная заявка на описание нашего мира. Я не пытаюсь дать глобального ответа, «как оно на самом деле», а лишь пробую описать отношения между приращениями, или вариациями, координат, скоростей, энергий, температур и т. д. Я ничего не говорю (пока) о том, как были созданы планеты, но надеюсь понять их движение и, самое главное, хочу получить возможность его предсказать. Мы наблюдаем за положением планет сегодня, зависимость между вариациями известна, следовательно, я могу вычислить их положение завтра, через год, через столетие, через вечность.