Я впервые познакомился со вторым законом Ньютона, будучи старшеклассником в Парижской школе, где традиционно уравнение записывалось в виде F = m y. Не знаю точно, почему тогда во французских школах использовалась греческая буква y для обозначения ускорения[4]. Однако теперь и там перешли к принятой на международном уровне и не такой удивительной для учащихся форме записи второго закона Ньютона с использованием a для ускорения.
Но мне особо понравилась буква y. Она была одним из первых важнейших символов, открытых мной в школе на уроках физики. Данное выражение позволило мне понять, что физическую величину или научную концепцию можно представить таким ясным и наглядным способом. Символ символов, так сказать! Во всяком случае, это был один из первых символов, с которым я начал взаимодействовать, изучая столь серьезную науку, и он же затем постоянно сопровождал мою работу в качестве физика. Это было также своего рода благословением: возможно, не все так просто; возможно, y заставляла задумываться немного больше, чем тривиальная a?
И это лишь начало. F = my стало первым дифференциальным уравнением. Прямая зависимость между приращениями… Это уже было настоящей физикой, а не бухгалтерским учетом (мои извинения бухгалтерам). В младших классах механика использовалась только для расчета равновесия весов, давления на дне бассейна и тому подобных задач. Это была «статика», холодная, жесткая, скучная, сопровождаемая старомодными объяснениями. Сколько студентов решили заняться бухгалтерским учетом вместо физики, после того как им объяснили, что стол стоит вертикально из-за реакции земли на его ноги? Что? Какому извращенному уму пришла в голову мысль, что земля толкает стол снизу вверх? Было ли действительно необходимо вводить понятие силы, чтобы додуматься до чего-то подобного?
Великое уравнение F = m у — это прежде всего уравнение движения, причем движения абсолютно любых материальных тел. Движения воздуха или акустические колебания (если это действительно хорошая музыка), акустика, аудиокассеты… политика, Большой скачок, надежда на лучший мир… Движения вездесущи. Повсюду мягкая сила дифференциальных уравнений заставляла мир изменяться и совершенствоваться, придавая ему неисчерпаемую волю к жизни.
Лучшие книги моей юности, полные стремительных поездов, летающих автомобилей и космических ракет, все еще со мной, несмотря на возникающие сомнения: вопросы об обществе потребления, проблемы с экологией…
Но кого это волнует? Если бы не наше общество, то было бы другое, столь же одухотворенное, подчиненное конкуренции и с быстро сменяющимися силами, динамичное, во всяком случае, как любой подросток в 16–18 лет. Как можно было жить в 18 лет без кризисов, без безработицы, без жилищных трудностей? Как могла бы жить сегодняшняя молодежь, если бы мы дали ей такую возможность?
В конце концов, неподвижность или, скорее, равномерное движение по прямой линии рассматривается не как отсутствие, пустота, разочарованное бездействие, но как равновесие всех сил. Порядок среди беспорядка: первое проявление дзен-буддизма в нашем обществе, движение мира и любви. Статика понимается в последнее время как предельное состояние динамики.
Глава 4
Закон всемирного тяготения (классическая теория тяготения Ньютона)
Это закон всемирного тяготения, определяющий гравитационную силу, действующую на все тела, имеющие массу, и заставивший «яблоко упасть на голову» Исааку Ньютону, его изобретателю, в 1684 г. Данный закон утверждает, что все тела, имеющие массу, испытывают взаимное гравитационное притяжение, и определяет величину силы притяжения как функцию расстояния между двумя телами[5].
4
Возможно, использование y связано с желанием обобщить понятие ускорения на основе наиболее распространенного примера — ускорения свободного падения, обозначаемого
5
Эта простейшая форма записи закона всемирного тяготения описывает гравитационную силу, возникающую между двумя точечными телами. Для расчета силы притяжения двух массивных тел на не очень большом расстоянии используется обобщенная формула, представляющая сумму гравитационных сил между всеми точками тел. Такая сумма называется интегралом. —