Рис. 1.2. Два фрагмента пути, по которому Марс движется на небе
Он жил в эпоху, когда не было еще уверенности в существовании некоторой общей закономерности для всех явлений природы. Какой глубокой была у него вера в такую закономерность, если, работая в одиночестве, никем не поддерживаемый и мало понятый, он на протяжении многих десятков лет черпал в ней силы для трудного и кропотливого эмпирического исследования движения планет и математических законов этого движения![4]
Больше того, Кеплер жил в эпоху, когда ему в течение нескольких лет приходилось всерьез заниматься защитой своей матери от обвинений в колдовстве; женщине реально грозил костер.
Кеплер сформулировал три высказывания. Они известны как три закона Кеплера.
1. Про эллипсы как таковые. Орбиты – эллипсы; Солнце – в одном из фокусов. Это был грандиозный успех, превращение наблюдений – сырых данных о движении планет по небу – в математическое высказывание и одновременно с этим колоссальный прорыв в соотнесении наших представлений об идеальном с реальностью. Ведь вполне естественно было думать, что «природа предпочитает совершенство» в виде сфер и круговых орбит, с Солнцем в центре, но, во-первых, Кеплер понял, что это не так, а во-вторых, сумел показать, как же все происходит на самом деле, причем это второе – с математической точностью (окружность – частный случай эллипса; в этом смысле орбиты могли бы быть и круговыми, просто они такими не оказались).
2. Про скорость движения по этим эллипсам. Она, оказывается, не постоянная. Кеплеру принадлежит ясная формулировка, из которой следует, в какой части эллипса планета движется быстрее и в точности во сколько раз быстрее, чем в какой-нибудь другой части. Закон так закон! – ему следуют все планеты, включая Землю. Чтобы его сформулировать, Кеплер снова приглашает нас посмотреть на орбиты со стороны и делает геометрические построения, проводя воображаемую линию от Солнца к планете и рассуждая о том, как эта линия поворачивается. Это довольно удивительно, если учесть, что никакой такой «линии» нет, но математические рассуждения с ее использованием позволяют сформулировать правило, описывающее реальные движения всех планет. Сравнивая положение планеты на орбите «сейчас» и, скажем, через день, Кеплер просит нас обратить внимание на площадь фигуры, образованной двумя радиусами и участком орбиты, который планета прошла за день. Второй закон Кеплера состоит в том, что площадь такого треугольника, заметаемого за выбранное время (скажем, день), – одна и та же вдоль всей орбиты. Там, где планета ближе к Солнцу, она движется как раз настолько быстрее, чтобы скомпенсировать меньшую высоту треугольника (расстояние от Солнца). Разница в скоростях вблизи Солнца и вдали от него велика для вытянутых эллипсов; для Земли же максимальная и минимальная скорости составляют 30,29 км/с и 29,29 км/с (соответствующие расстояния до Солнца при этом 147,09 млн и 152,10 млн километров). Земля ближе к Солнцу и движется быстрее, когда в Северном полушарии осень и зима, из-за чего этот прекрасный сезон формально оказывается укороченным на несколько дней. (Пять миллионов километров ближе или дальше от Солнца – далеко не первостепенный фактор, влияющий на климат.)
3. Про то, как размеры эллипсов, по которым движутся разные планеты, соотносятся с временем их полного оборота вокруг Солнца. Не только каждая планета сама по себе следует законам, но и каждая пара планет подчиняется строгой и одной для всех математике. «Размером» эллипса в данном случае является его большая полуось – расстояние от центра (а не от Солнца!) до точки наибольшего удаления. Для любой пары планет Кеплер предлагает поделить друг на друга их большие полуоси, а результат возвести в квадрат. В качестве второго действия нужно поделить друг на друга продолжительности года на каждой планете, а результат этого деления возвести в куб. Получится, говорит Кеплер, одно и то же. Чем дальше планета от Солнца, тем больше времени занимает ее полный оборот – не только из-за того, что орбита длиннее, но еще и из-за того, что скорость планеты меньше (в 4 раза дальше – в 8 раз дольше; в 9 раз дальше – в 27 раз дольше).