Выбрать главу

И выступление в Вашингтоне, и статья в Physics Today не изобиловали математикой и предназначались физикам, интересующимся историей науки, а не только специалистам в области физики элементарных частиц, поэтому я решил, что статья будет понятна и более широкой аудитории. Однако, перечитав текст, я обнаружил, что позволил себе использовать термины, такие как «спин» и «барион», которые могут потребовать пояснений для неспециалистов. По этой причине я добавил разъяснения в сносках, но сохранил основной текст статьи практически без изменений. Обсуждение некоторых вопросов на более доступном уровне можно найти в главе 11 этого сборника.

7 марта 1911 г. Эрнест Резерфорд принял участие в заседании Манчестерского литературно-философского общества — того самого, которому веком ранее Джон Дальтон докладывал об измерении массы атомов. На этой встрече Резерфорд объявил об открытии атомного ядра. Американское физическое общество решило отмечать в этот день начало века физики элементарных частиц.

Я считаю, что это мудрое решение. Одна из причин именно такого выбора состоит в том, что эксперимент, поставленный Хансом Гейгером и Эрнестом Марсденом, на результатах которого Резерфорд построил свои выводы о ядре, явился образцом для всех последующих экспериментов по рассеянию частиц, ставших с тех пор основным занятием для физиков. Только вместо пучков протонов или электронов из ускорителя Гейгер и Марсден использовали альфа-частицы радиоактивного распада радия, падающие на мишень из золотой фольги. А вместо проволочных, искровых или пузырьковых камер для обнаружения рассеянных частиц они воспользовались экраном, покрытым сульфидом цинка, который при столкновении с альфа-частицами дает яркие вспышки.

Что еще важнее, наблюдение рассеяния альфа-частиц на большие углы убедило Резерфорда, что основная часть массы и положительный электрический заряд сконцентрированы в малом объеме ядра атома. Раньше считалось, что атом представляет собой нечто вроде пудинга, в котором электроны распределены, как изюм среди равномерно размазанного положительного заряда. Открытие ядра стало первым в серии важных открытий, сделанных Нильсом Бором (который приезжал в Манчестер), Луи де Бройлем, Эрвином Шрёдингером и Вернером Гейзенбергом, которые и привели к созданию современной квантовой механики.

После этого бурного старта на пути квантовой механики образовалось два явных и существенных для развития фундаментальной физики препятствия. Одно из них связано с распространением принципов квантовой механики на частицы, скорость которых близка к скорости света, а значит, частицы должны подчиняться специальной теории относительности Эйнштейна (СТО). Поль Дирак обобщил волновое уравнение Шрёдингера и получил релятивистское волновое уравнение[12]. Тогда казалось, что предсказание существования дробного спина 1/2 у элементарных частиц — это огромная победа, однако теперь мы знаем, что это был скорее провал, чем успех[13]. Существуют частицы с целочисленным спином 1, например W- и Z-бозоны, которые являются такими же элементарными частицами, как электрон, и многие ученые считают, что на БАК будет открыта такая же элементарная частица с нулевым спином[14]. Кроме того, уравнение Дирака было крайне затруднительно приложить к системам, состоящим из более чем одного электрона. Будущее оказалось за квантовой теорией поля[15], созданной в результате совместной работы разных групп ученых, например команды Макса Борна, Гейзенберга и Паскуаля Йордана в 1926 г., Гейзенберга и Вольфганга Паули в 1926 г. и Паули и Виктора Вайскопфа в 1934 г. (Вайскопф как-то рассказал мне, что в одной из своих поздних статей Паули собирался показать ошибочность теории Дирака о необходимости дробного спина 1/2 и построить удобную и разумную теорию частиц с нулевым спином.) Квантовая теория поля впервые была применена Ферми в 1933 г. в его теории бета-распада, а затем стала математической основой для большей части успешных теорий элементарных частиц[16].

вернуться

12

В интерпретации квантовой механики, разработанной Эрвином Шрёдингером, состояние системы описывается волновой функцией. Если система состоит из единственной частицы, например электрона в электрическом поле атомного ядра, волновая функция представляет собой множество чисел, каждое из которых ставится в соответствие определенному месту в пространстве, потенциально занимаемому частицей. Большему значению волновой функции соответствует более высокая вероятность нахождения частицы в данной точке пространства. Волновое уравнение описывает изменение с течением времени этих вероятностей.

вернуться

13

Спин — величина, которая характеризует момент вращения частицы вокруг своей оси. Спин 1/2 вдвое меньше спина фотонов — частиц, из которых состоит свет.

вернуться

14

Это и в самом деле произошло в 2012 г.

вернуться

15

В рамках квантовой теории поля положения квантовой механики применяются к полям, например к электрическому и магнитному, а не к частицам непосредственно. Элементарные частицы в квантовой теории поля — это сгустки энергии и импульса различных полей.

вернуться

16

Бета-распад — один из видов радиоактивного распада атомного ядра, в котором протон превращается в нейтрон или наоборот.