Проблема масштаба теснейшим образом связана, а иногда прямо-таки неотделима от другой основной проблемы архитектурной композиции -- от проблемы пропорций. Во всей теории архитектуры нет другой проблемы, к которой бы с таким увлечением и с такой настойчивостью возвращались мысли строителей и исследователей; каждая эпоха с новой энергией устремляется к разрешению проблемы пропорций, надеясь с ее помощью открыть тайну художественного воздействия архитектуры. Сколько раз уже казалось, что проблема близка к своему полному и окончательному разрешению, что найден канон идеальных пропорций, и снова вместе с эволюцией вкусов происходит низвержение старого идеала и его замена новым каноном. Невольно зарождается сомнение, не были ли все эти каноны и нормы красивых, правильных пропорций только гипотезами, только выражением субъективного вкуса, невольно напрашивается вывод, что хотя и существуют здания с идеальными пропорциями, но не существует норм и законов для определения и создания идеальных пропорций. С другой стороны, не подлежит никакому сомнению, что из всех изобразительных искусств архитектура наиболее тесно связана с математикой, с числами и мерами, с геометрической схемой. Быть может, именно поэтому архитектуре всегда угрожают две опасности -- или слишком суровое подчинение математическим принципам, или полное от них освобождение. Тайна гармонических пропорций, по-видимому, лежит где-то в середине между абсолютными законами чисел и свободным чутьем интуиции.
Пропорциями в архитектуре мы называем согласование отдельных частей здания между собой и в отношении к целому.
С изысканиями античных теоретиков в области архитектурных пропорций знакомит нас римский архитектор Витрувий, живший в I веке до н. э. и зафиксировавший свои взгляды в обширном трактате "De archiectura". Из этого трактата видно, какое огромное значение античные теоретики придавали гармоническому согласованию отдельных элементов композиции, причем они базировались в своих расчетах на числовом или арифметическом принципе, на так зазываемом модуле. Модуль -- это единица меры, принятая для вычисления отдельных элементов архитектурной конструкции. Подобно тому как античный живописец и скульптор калькулировали пропорции человеческого тела, исходя из вышины головы как единицы меры, как модуля (идеально пропорционированным считалось тело, в котором вышина головы повторяется семь или восемь раз), точно так же и архитекторы в основу исчисления пропорций клали определенный модуль, и именно полудиаметр ствола колонны. Этот модуль (деленный на части или повторенный несколько раз) определял не только вышину колонны и размеры интервала, но также пропорции капители, частей антаблемента и т. п.
Наряду с модулем античные архитекторы очень важное значение придавали также принципу аналогии, то есть повторению в различных элементах здания одной и той же геометрической фигуры, но в различном масштабе, иначе говоря, принципу подобных фигур. Бесконечно может быть разнообразие архитектурных форм, но, по мнению античных теоретиков, взятые сами по себе архитектурные формы не обладают полной эстетической ценностью, истинно гармонические пропорции вытекают только из повторения основной фигуры здания во всех его подразделениях. Так, например, план Парфенона основан на известном отношении длины к ширине, которое определяется диагональю четырехугольника и которое само по себе не имеет эстетического качества. Гармония Парфенона вытекает из аналогий, из повторения одних и тех же пропорций в плане как наружной колоннады, так и четырехугольника целлы и ее внутренней колоннады. Еще убедительнее принцип аналогии проявляется в плане так называемого Эрехтейона, храма с очень сложной и на первый взгляд совершенно произвольной композицией, которая, однако, при ближайшем рассмотрении оказывается построенной на строгой гармонии элементов (все три части здания, казалось бы, столь различные между собой, как видно из параллельных диагоналей, представляют собой подобные фигуры). Разумеется, принцип аналогии применялся не только в композиции плана, но и в расчленении масс здания. Особенно сложный пример принципа аналогии дают Пропилеи в Мюнхене, где диагонали подобных фигур то идут параллельно, то встречаются под прямым углом, направляются то более отвесно, то более отлого.
Если в античной архитектуре (и отчасти в архитектуре Ренессанса) с их культом модуля преобладает арифметический метод согласования пропорций, то пропорции средневековой архитектуры основаны главным образом на геометрических отношениях и схемах. Так, например, в романских церквах квадрат является единицей меры, положенной в основу распределения пространства, тогда как в эпоху готики господствует так называемый принцип триангуляции, то есть определение пропорций здания (его плана, ширины и вышины его кораблей) с помощью системы треугольников, равнобедренных, равносторонних и прямоугольных, причем вершины треугольников совпадают с главными пунктами и границами здания как в горизонтальной, так и в вертикальной проекции. Характерный пример триангуляции -- Sainte Chapelle в Париже, где на основе равносторонних треугольников проведенные параллельные линии связывают целый ряд важных пунктов и плоскостей в гармоническую игру пропорций; при этом между вышиной цоколя и окон образуются простейшие отношения двух к трем. Известно также, что иностранные эксперты, призванные в Милан при постройке собора в конце XIV века, долго совещались о способах применения геометрической системы, причем французские архитекторы высказывались за систему круга, а немецкие -- за равнобедренный треугольник. Кроме того, сохранился рисунок математика Сторналоко от 1391 года, который в схематической форме дает разрез Миланского собора. По этой схеме ширина собора разделена на двенадцать равных частей, из которых четыре падают на средний корабль и по две -- на боковые корабли; на этом делении построены равнобедренные треугольники, которые определяют вышину пяты и вершины сводов. И действительно, схема итальянского математика почти полностью совпадает с реальными пропорциями Миланского собора. Однако не следует впадать в преувеличение тех новейших теоретиков архитектуры, которые вместе с французским ученым Виолле Ле Дюком объявляют триангуляцию абсолютным и непреложным принципом гармонических пропорций в архитектуре. Во всяком случае, для средневекового архитектора, не имевшего в своем распоряжении современных оптических приборов, триангуляция была не столько идеальной нормой пропорции, сколько техническим средством проектирования здания. В самом деле, представим себе, что средневековый архитектор приступает к постройке трехнефной базилики. Выбирается площадь и приблизительно вымеривается шагами. Затем в полдень водружается жердь в центре будущего фасада. Полуденное солнце бросает ее тень на север. В эхом направлении вымеривается расстояние в тридцать футов с каждой стороны жерди; оно определяет ширину фасада и служит основой для равнобедренного треугольника, биссектриса которого образует центральную ось базилики, а вершина отмечает половину протяженности базилики. Остается образовать, второй треугольник, вышина которого равнялась бы шестидесяти футам, и план базилики готов. С помощью того же треугольника конструируется и разрез базилики. Традиции требовали, чтобы центральный неф базилики был вдвое шире боковых нефов. С помощью равнобедренного треугольника в шестьдесят футов вышины, основание которого разделено на четыре равные части, определяют положение опор для сводов, а также вышину центрального и боковых нефов. Бели в эпоху раннехристианского искусства, а также в романском стиле предпочтение отдавали пропорциям с отношением одного к двум, то излюбленной пропорцией в эпоху Ренессанса было так называемое золотое сечение. Линия или плоскость разделена по принципу золотого сечения тогда, если меньший отрезок относится большему так же, как больший к целому (тамбур купола св. Петра относится к чаше купола так, как вышина купола к вышине всей купольной постройки). Такое деление имеет иррациональный характер, так как может быть лишь приблизительно выражено в цифрах три, пять и восемь. Его популярность основана на том, что многие предметы обихода -- ящики, шкафы, визитные карточки -- часто имеют пропорции, близкие к золотому сечению. Следует думать поэтому, что пропорции золотого сечения, может быть, и бессознательно, доставляют глазу особенное удовольствие. Однако ни теоретики классицизма, ни тем более авторы конкретных построек в эпоху Ренессанса не придерживались буквально принципа золотого сечения и старались вносить в него всяческие вариации. Так, например, для деления здания па этажи архитектор Серлио предлагает принцип, по которому каждый следующий этаж на одну четверть ниже предыдущего. Во многих дворцах Ренессанса высота карниза относится к высоте этажа так же, как высота венчающего карниза к высоте всего здания. Напротив, в отличие от стремления Ренессанса к простым и гармоническим пропорциям, архитекторы барокко охотно затрудняют восприятие пропорциональных отношений в здании или же сознательно пользуются диссонансами. Сюда относится излюбленный в архитектуре XVI века и барокко прием -- применение в одном здании или в делении одной плоскости двух различных шкал пропорций: в зале дворца Дожей в Венеции, например, сочетаются два арифметических отношения (одного к двум и одного к четырем) н две системы подобных фигур -- сочетание, которое придает пропорциям зала впечатление скрытой динамики. На этом примере особенно ясно можно наблюдать контраст между абстрактной теорией и живым творчеством художника. В то время как теоретик всегда исходит из деталей, из некоей единицы меры, направляется от частного к общему, художник обычно творит от целого к частям" Эта мысль ярко выражена Т. Фишером: "Готовое произведение архитектуры легко измерить, но одними только измерениями и расчетами оно не могло быть создано".