Выбрать главу

В дальнейшем мы тоже попробуем конструировать понятие модели, считая его очень важным для лингвистики. Но в своих заключениях по этой проблеме, в отличие от множества других авторов, мы будем претендовать на полную ясность и последовательность, пусть хотя бы ценою некоторого упрощения проблемы и пусть хотя бы с использованием тех или иных обывательских представлений. Лучше начать с обывательских представлений, но вызвать у читателя интерес к этой огромной лингвистической проблеме и возбудить интерес к теоретическому и практическому использованию теории моделей, чем начать с абсолютно строгих, но чересчур отвлеченных представлений, и тут же сразу отбить интерес у лингвистов к этой проблеме и поддержать их некритический сепаратизм на том-де основании, что это математика, а не лингвистика и что-де к нам это не имеет никакого отношения.

Поэтому начнем в этой проблеме с того, что должно быть понятно и всякому лингвисту и всякому нелингвисту и не будем спешить с установлением абсолютной строгости наших категорий и не будем раньше времени пускать в ход логически-изощренный аппарат математических аксиом и теорем. Пожалуй, введение строгих категорий, аксиом и теорем лучше даже осуществить в другой, более специальной работе.

3. Что такое языковая модель?

Схема конструирования

Языковую модель в самой общей форме можно было бы определить как ту или иную схему конструирования языковых элементов. Необходимо сейчас же заметить, что все эти определяющие для модели моменты, взятые сами по себе, не представляют собою ровно никакой новости для традиционного языкознания. Можно ли представить себе хотя бы какой-нибудь отдел языкознания без приемов схематизации? В любой грамматике имеются схемы склонения или спряжения, в любом синтаксисе устанавливаются общие правила для того, чтобы объять огромные материалы и подвести их по возможности под один или под несколько языковых принципов. Во всяком более или менее подробном словаре указываются различные значения каждого слова в таком виде, что иной раз бывает нетрудно установить семантическую схему развития в описательном или в историческом плане. Понятие конструирования тоже далеко не чуждо традиционному языкознанию, хотя бы, например, в виде установления тех или иных оборотов речи, которые часто так и называются конструкциями. Но, конечно, конструирование, как оно используется в традиционном языкознании, гораздо шире этого. Так, например, всякий языковед конструирует т.н. фонетические законы, морфологические соответствия между разными языками, принципы того или другого синтаксиса сложного предложения и т.д. и т.д. Таким образом, те логические процессы, на которых базируется математическая лингвистика, сами по себе вовсе не чужды традиционному языкознанию, а, наоборот, являются в такой же мере для него необходимыми и непререкаемыми.

В чем же тогда дело и что нового дает нам здесь математическая лингвистика в сравнении с традиционной?

Теория множеств

Наиболее оригинальным достоянием современной лингвистики является перенесение в область языкознания того, что математики называют теорией множеств. Нужно иметь в виду, что термин «множество» для самих математиков является вполне условным и не выражает того, о чем здесь идет речь. Под множеством обыватель всегда понимает достаточно большую совокупность тех или других вещей, признаков вещей, процессов и т.д. и т.д. Однако то, что в математике понимается под множеством, не есть просто собрание или совокупность чего бы то ни было, но всегда есть нечто целое, в свете которого представляются и отдельные его части. И уже тем более тут не идет речь о каком-нибудь чрезвычайно большом количестве. Не только двойка, тройка и т.д. могут рассматриваться в математике как множества, но в виде такого множества может выступать даже единица и даже нуль. В математике существует понятие нуль-множества. Элемент множества тоже не есть просто какая бы то ни было его часть, но такая его часть, которая рассматривается в свете этого множества как некая цельность. Неискушенный в математике обыватель склонен думать, что арифметика оперирует отвлеченными числами, а конкретные фигуры или наглядные построения возможны только геометрические. На самом же деле отвлеченная числовая область тоже может и должна представляться с точки зрения идей порядка, с точки зрения той или иной последовательности, фигурности и т.д. Так, например, уже ученик средней школы знает о таких числовых последовательностях, как, например, арифметическая или геометрическая прогрессия или как накопление бесконечного числа десятичных знаков при извлечении корней. Везде в этих случаях мы имеем дело не с хаотическим нагромождением каких попало чисел, но везде тут имеется в виду тот или иной закон получения этих чисел, т.е. принцип того или иного их упорядочения. Вот это умственное представление цельности вместе с точной фиксацией и всех ее частей, но, конечно, не изолированных, не взятых в отрыве от цельного, а именно в свете этого целого, такое представление о числе и лежит в основе математической теории множеств. Чтобы выразиться максимальна понятным для нематематиков языком, будет вполне достаточно сказать, что множество есть едино-раздельная целость, в которой точно фиксируется как она сама, в своей самостоятельности и неделимости, так и все ее элементы, наглядно демонстрирующие эту целость в ее конкретном явлении. Отсюда необходимо сделать и вывод относительно языковой модели, если ее понимать как схему того или иного конструирования языковых элементов.