Выбрать главу

/*

 * cp1.c

*/

#include <stdio.h>

#include <pthread.h>

int data_ready = 0;

pthread_mutex_t mutex = PTHREAD_MUTEX_INITIALIZER;

pthread_cond_t condvar = PTHREAD_COND_INITIALIZER;

void* consumer(void *notused){

 printf("Это поток-потребитель...\n");

 while (1) {

  pthread_mutex_lock(&mutex);

  while (!data_ready) {

   pthread_cond_wait(&condvar, &mutex);

  }

  // Обработать данные

  printf("Потребитель: получил данные от производителя\n");

  data_ready = 0;

  pthread_cond_signal(&condvar);

  pthread_mutex_unlock(&mutex);

 }

}

void* producer (void *notused) {

 printf("Это поток-производитель...\n");

 while (1) {

  // Получить данные от оборудования

  // (мы имитируем это при помощи sleep(1))

  sleep(1);

  printf("Производитель: получил данные от h/w\n");

  pthread_mutex_lock(&mutex);

  while (data_ready) {

   pthread_cond_wait(&condvar, &mutex);

  }

  data_ready = 1;

  pthread_cond_signal(&condvar);

  pthread_mutex_unlock(&mutex);

 }

}

main() {

 printf(

  "Начало примера с производителем и потребителем...\n");

 // Создать поток-производитель и поток-потребитель

 pthread_create(NULL, NULL, producer, NULL);

 pthread_create(NULL, NULL, consumer, NULL);

 // Дать потокам немного повыполняться

 sleep(20);

}

Этот пример в значительной степени похож на программу с применением ждущей блокировки, с небольшими отличиями (мы добавили несколько вызовов printf(), а также функцию main(), чтобы программа могла работать!) Первое отличие, которое бросается в глаза, — здесь использован новый тип данных, pthread_cond_t. Это просто декларация для условной переменной; мы назвали нашу условную переменную condvar.

Следующее, что видно из примера, — это то, что структура «потребителя» идентична таковой в предыдущем примере с ждущей блокировкой. Мы заменили функции pthread_sleepon_lock() и pthread_sleepon_unlock() на стандартные мутекс-ориентированные версии (pthread_mutex_lock() и pthread_mutex_unlock()). Функция pthread_sleepon_wait() была заменена на функцию pthread_cond_wait().

Основное различие здесь состоит в том, что библиотека ждущих блокировок имеет скрытый внутренний мутекс, а при использовании условных переменных мутекс передается явно. Последний способ дает нам больше гибкости.

И, наконец, обратите внимание на то, что мы использовали функцию pthread_cond_signal() вместо функции pthread_sleepon_signal() (опять же, с явной передачей мутекса).

Функции phtread*_signal() и pthread*_broadcast()

В разделе о ждущих блокировках мы обещали обсудить различие между функциями pthread_sleepon_broadcast() и pthread_sleepon_signal(). Заодно поговорим и о различии между двумя аналогичными функциями, имеющими отношение к условным переменным: pthread_cond_signal() и pthread_cond_broadcast().

В двух словах, функция в варианте «signal» разблокирует только один поток. Например, если бы несколько потоков находилось в ожидании по функции «wait», и некий поток вызвал бы функцию pthread*_signal(), то был бы разблокирован только один из ждущих потоков. Который из них? Тот, у которого наивысший приоритет. Если имеется два или более потоков с одинаковым приоритетом, порядок «пробуждения» будет не определен. Применение же варианта pthread*_broadcast() приведет к тому что будут разблокированы все ожидающие потоки.

Разблокировать все потоки может показаться излишним. Но с другой стороны, разблокировать только один (причем случайный поток тоже не совсем корректно.

Поэтому мы должны думать, где имеет смысл использовать какой вариант. Очевидно, что если у вас только один ждущий поток, как у нас и было во всех вариантах «потребителя», функция pthread*_signal() прекрасно справится — будет разблокирован один поток, и как раз тот, который нужно (потому что других просто нет).

В ситуации с несколькими потоками в первую очередь следует выяснить: а почему они ждут? Обычно на этот вопрос есть два ответа:

• все потоки рассматриваются как эквивалентные и реально образуют пул доступных потоков, готовых к обработке некоторого запроса;

• все потоки являются уникальными, и каждый из них ждет соблюдения своего специфического условия.

В первом случае мы можем представить себе, что код всех потоков имеет примерно следующий вид:

/*

 * cv1.c

*/

#include <stdio.h>

#include <pthread.h>

pthread_mutex_t mutex_data = PTHREAD_MUTEX_INITIALIZER;

pthread_cond_t cv_data = PTHREAD_COND_INITIALIZER;

int data;

thread1() {

 for (;;) {

  pthread_mutex_lock(&mutex_data);

  while (data == 0) {

   pthread_cond_wait(&cv_data, &mutex_data);

  }

  // Сделать что-нибудь

  pthread_mutex_unlock(&mutex_data);

 }

}

В этом случае абсолютно неважно, который именно из потоков получит данные — главное, чтобы хотя бы один сделал это и произвел над этими данными необходимые действия.

Однако, если ваш код подобен приведенному ниже, все будет несколько по-иному:

/*

 * cv2.c

*/

#include <stdio.h>

#include <pthread.h>

pthread_mutex_t mutex_xy = PTHREAD_MUTEX_INITIALIZER;

pthread_cond_t cv_xy = PTHREAD_COND_INITIALIZER;

int x, y;

int isprime(int);

thread1() {

 for (;;) {

  pthread_mutex_lock(&mutex_xy);

  while ((x > 7) && (y != 15)) {

   pthread_cond_wait(&cv_xy, &mutex_xy);

  }

  // Сделать что-нибудь

  pthread_mutex_unlock(&mutex_xy);

 }