Обратите внимание, что с потоками ничего не происходит до тех пор, пока число блокированных потоков не превышает значение hi_water. Реализация здесь такова: как только поток завершает обработку, он проверяет число блокированных на данный момент потоков, и если их слишком много (то есть больше, чем предусмотрено параметром hi_water), то «совершает самоубийство». Удобство использования параметров lo_water и hi_water в управляющих структурах состоит в том, что ими вы фактически задаете «эффективный диапазон» числа потоков, в пределах которого всегда доступно достаточное число потоков, и потоки без необходимости не создаются и не уничтожаются. В нашем случае, после выполнения действий, перечисленных в вышеупомянутых таблицах, мы имеем систему, которая способна обрабатывать до 4 запросов одновременно без необходимости в создании дополнительных потоков (7-4 = 3, что соответствует значению параметра lo_ water).
Теперь, когда мы достаточно хорошо владеем методикой управления числом потоков в пуле, давайте обратимся к другим элементам атрибутной записи пула потоков:
// Функции и дескриптор пула потоков
THREAD_POOL_HANDLE_T *handlе;
THREAD_POOL_PARAM_T *(*block_func)(
THREAD_POOL_PARAM_T *ctp);
void (*unblock_func)(THREAD_POOL_PARAM_T *ctp);
int (*handler_func)(THREAD_POOL_PARAM_T *ctp);
THREAD_POOL_PARAM_T *(*context_alloc)(
THREAD_POOL_HANDLE_T *handle);
void (*context_free)(THREAD_POOL_PARAM_T *ctp);
Повторно обратимся к рисунку «Жизненный цикл пула потоков». Из рисунка видно, что при создании потока каждый раз вызывается функция context_alloc(). (Аналогично, при уничтожении потока вызывается функция context_tree()). Элемент атрибутной записи с именем handler передается функции context_alloc() в качестве ее единственного параметра. Функция context_alloc() ответственна за индивидуальные настройки потока и возвращает указатель на контекст (списках параметров называемый ctp). Заметьте, что содержание этого указателя — исключительно ваша забота; библиотеке абсолютно все равно, что вы в него поместите.
Теперь, когда контекст создан функцией context_alloc(), вызывается функция block_func() для перевода потока в режим блокирования. Заметьте, что функция block_func() получает на вход результат работы функции context_alloc(). После того как функция block_func() разблокируется, она возвращает указатель на контекст, который библиотека передает функции handler_func(). Функция handler_func() отвечает за выполнение «работы» — например, в типовом варианте именно она обрабатывает сообщение от клиента. На данный момент принято, что функция handler_func() должна возвращать нуль — ненулевые значения зарезервированы QSSL для будущего функционального расширения. Функция unblock_func() также в настоящее время зарезервирована, поэтому просто оставьте там NULL.
Возможно, ситуацию немного прояснит приведенный ниже пример псевдокода (он основан все на том же рисунке «Жизненный цикл потока в пуле потоков»):
FOREVER DO
IF (#threads < lo_water) THEN
IF (#threads < maximum) THEN
create new thread
context = (*context_alloc)(handle);
ENDIF
ENDIF
retval = (*block_func)(context);
(*handler_func)(retval);
IF (#threads > hi_water) THEN
(*context_free)(context)
kill thread
ENDIF
DONE
Отметим, что приведенная выше программа излишне упрощена. Ее назначение состоит только в том, чтобы продемонстрировать вам поток данных по параметрам ctp и handler и дать вам некоторое представление об алгоритмах, которые обычно применяются для управления числом потоков.
Диспетчеризация и реальный мир
До настоящего момента мы обсуждали дисциплины диспетчеризации и состояния потоков, но практически ничего не сказали относительно того, почему и когда происходит собственно перепланирование. Существует распространенное заблуждение, что перепланирование «просто случается», безо всяких реальных причин. И в общем-то, для проектирования это довольно полезная абстракция! Однако, очень важно понимать, почему происходит перепланирование. Вспомним рисунок «Схема алгоритма диспетчеризации» (в разделе «Роль ядра»).
Перепланирование может иметь только три причины:
• аппаратное прерывание;
• системный вызов;
• сбой (исключение).
Перепланирование по аппаратному прерыванию
Перепланирование из-за аппаратного прерывания можно разделить на две категории:
• по прерыванию от таймеров;
• по прерыванию от других аппаратных средств.
Часы реального времени генерируют периодические прерывания для ядра, организуя перепланирование во времени.
Например, если вы производите вызов sleep(10)
, часы реального времени сгенерируют некоторое число прерываний; по каждому прерыванию ядро увеличивает значение системных часов. Когда системные часы покажут, что 10 секунд истекли, ядро перепланирует ваш поток, переведя его в состояние готовности (READY). (Мы рассмотрим этот вопрос более подробно в главе «Часы, таймеры и периодические уведомления»).
Другие потоки могут ожидать аппаратные прерывания от внешних устройств, таких как последовательный порт, жесткий диск или аудио платы. В этом случае они блокируются в ядре, ожидающем аппаратное прерывание. Поток будет переупорядочен ядром только после того, как ядро сгенерирует «событие».
Перепланирование по системным вызовам
Если поток делает системный вызов, перепланирование выполняется немедленно и может рассматриваться как асинхронное в отношении прерываний таймера и других прерываний.