Выбрать главу

Давайте предположим, что клиент вызывает функцию open():

fd = open("/dev/ser1", O_WRONLY);

Реализация функции open() в клиентской Си-библиотеке создает сообщение и пересылает его администратору процессов. Это сообщение гласит: «Хочу открыть /dev/ser1. К кому мне обратиться по этому вопросу?»

Первая стадия разрешения имени.

Администратор процессов принимает запрос и просматривает дерево имен на предмет соответствия (давайте предположим здесь, что нам необходимо точное соответствие). Имя пути «/dev/ser1» вполне подойдет, и администратор процессов может ответить клиенту: «Нашел /dev/ser1. За обработку отвечает канал 1 процесса 44 на узле 0, спроси его!»

Не забывайте: мы все еще в клиентском коде open()!

Функция open() создает другое сообщение и соединяется с указанным процессом (PID 44) на указанном узле (NID 0 означает локальный узел) по заданному каналу (CHID 1), помещая обработчик (handle) непосредственно в сообщение. Это воистину «сообщение установки соединения» — то самое сообщение которое клиентская функция open() использует для установления связи с администратором ресурса (3 стадия на рисунке ниже) Когда администратор ресурса получает сообщение установки соединения, он анализирует его и проверяет на корректность. Например, вы могли бы попытаться применить операцию записи к администратору ресурса, который реализует файловую систему с доступом только для чтения — в этом случае вы бы получили обратно признак ошибки (в данном случае — EROFS). В нашем примере, однако, администратор последовательного порта смотрит на запрос (мы указали там O_WRONLY, что для последовательного порта абсолютно кошерно) и отвечает признаком EOK (4 стадия на рисунке ниже).

Сообщение _IO_CONNECT.

Затем, наконец, клиентская функция open() возвращает клиенту корректный дескриптор файла.

На самом деле этот дескриптор файла представляет собой идентификатор соединения, который мы только что использовали для отправки сообщения администратору ресурса! Если бы администратор ресурса не ответил признаком EOK, мы бы сообщили клиенту, что произошла ошибка (open() возвратила бы -1 и установила код ошибки в errno).

Поиск администратора процессов

Теперь, когда мы знаем основные этапы поиска конкретного администратора ресурса, осталось раскрыть тайну поиска администратора процесса, с которого все начинается. На самом деле все очень просто. По определению, администратору процессов соответствует дескриптор узла 0 (то есть текущий узел), идентификатором процесса 1 и идентификатор канала 1. Так что администратор процессов всегда идентифицируется триплетом ND/PID/CHID, равным 0/1/1.

Обработка каталогов

Пример, рассмотренный выше, относился к администратору последовательного порта. Мы также высказывали предположение, что хотим точного соответствия имен путей при поиске по дереву. Это предположение справедливо только наполовину — все соответствия имен путей, о которых мы будем говорить в этой главе, основаны на полном соответствии компонента имени пути, но вовсе не обязательно имени пути целиком. Давайте вкратце это поясним.

Предположим, у меня есть код, который делает следующее:

fp = fopen("/etc/passwd", "r");

Напомним, что функция fopen() в конечном счете вызывает функцию open(), так что реально мы имеем функцию open(), запрашивающую имя пути /etc/passwd. Но такого имени на рисунке нет:

Пространство имен путей в QNX/Neutrino.

Однако, из рисунка видно, что модуль fs-qnx4 зарегистрировал свою тройку ND/PID/CHID для имени пути «/». Хоть это и не показано на рисунке, файловая система fs-qnx4 зарегистрировалась как «администратор каталога», сказав администратору процессов, что будет отвечать за «/» и все то, что расположено «ниже». «Администраторы устройств» (например, администратор последовательного порта) так не делают. Установив флаг каталога, fs-qnx4 получает возможность обработать запрос для имени пути «/etc/passwd», потому что это имя начинается с «/», а значит, есть совпадение!

А что произошло бы, если бы мы попытались сделать так?

fd = open("/dev/ser1/9600.8.1.n", O_WRONLY);

Ну, поскольку у администратора последовательного порта не установлен флаг каталога, администратор процессов увидит эта и скажет: «Опаньки, извините, /dev/ser1 — не каталог. В обработке отказано». Запрос прямо здесь и заканчивается — администратор процессов даже не возвращает функции open() четверку ND/PID/CHID/handle.

Из параметров функции open() в примере выше видно, что может показаться заманчивой идеей позволить некоторым «традиционным» устройствам открываться с дополнительными параметрами, указываемыми после «обычного» имени. Однако, эмпирическое правило здесь такое: если это пройдет на совещании по организации проекта, тогда вперед. Некоторые из моих студентов, услышав это от меня, заявляют: «Так я и есть сам себе комитет по проектным решениям!» На что я обычно отвечаю. «Пистолет у вас есть. Прострелите себе ногу. :-)»

Объединенные файловые системы

Взгляните повнимательнее на уже знакомый нам рисунок.

Пространство имен путей в QNX/Neutrino.

Обратите внимание, что ответственными за префикс «/» объявили себя как файловая система fs-qnx4, так и администратор процессов. Это нормально, и беспокоиться тут не о чем. Мало того, иногда это оказывается очень даже неплохой идеей. Рассмотрим один такой случай.

Файловые системы с перекрытием

Предположим, что у вас очень медленное сетевое соединение, и вы смонтировали поверх него сетевую файловую систему. Вы замечаете, что некоторый файлы используются достаточно часто, и хотели бы, чтобы эти файлы неким волшебным способом «кешировались» на вашей машине, но увы и ах, проектировщики сетевой файловой системы это почему-то не предусмотрели. И тогда вы решаете самостоятельно написать кеширующую файловую систему (назовем ее, например, fs-cache) и поместить ее поверх сетевой файловой системы. Вот как это будет смотреться с позиции клиента:

Обе файловые системы, fs-nfs (сетевая файловая система) и ваша кэшированная файловая система (fs-cache) регистрируются под одним и тем же префиксом, «/nfs» уже упомянули выше, в QNX/Neutrino это нормально и абсолютно законно.

Предположим, что ваша система только что стартовала, и в вашей кэшированной файловой системе еще ничего нет. Клиентская программа пробует открыть какой-нибудь файл — скажем /nfs/home/rk/abc.txt. Ваша кэшированная файловая система находится «перед» сетевой файловой системой (я потом покажу вам, как это сделать, когда мы будем обсуждать реализацию администратора ресурса).