Выбрать главу

• расширение OCB;

• расширение атрибутной записи;

• блокирование в пределах администратора ресурсов;

• возврат элементов каталога.

Расширение OCB

В ряде случаев у вас может возникнуть необходимость расширения OCB. Процедура эта является относительно безболезненной. Обычно OCB расширяют дополнительными флагами, характеризующими каждый конкретный open(). Один такой флаг можно было бы использовать с обработчиком io_unblock() для кэширования значения флага ядра _NTO_MI_UNBLOCK_REQ (подробнее см. параграф «Применение флага _NTO_MI_UNBLOCK_REQ» в главе «Обмен сообщениями»).

Для расширения блока OCB вам нужно будет обеспечить две дополнительных функции: одну для выделения OCB, и одну — для его освобождения. Затем вы должны будете привязать эти две функции к записи точки монтирования. (Да-да, совершенно верно — вам понадобится запись точки монтирования, даже если только для этого.) И наконец, вы должны будете определить ваш собственный тип OCB, чтобы все прототипы в программе были корректны.

Давайте рассмотрим сначала описание типа OCB, а затем уже поглядим, как переопределяются функции:

#define IOFUNC_OCB_T struct my_ocb

#include <sys/iofunc.h>

Это сообщает включаемому файлу <sys/iofunc.h>, что именованная константа IOFUNC_OCB_T теперь указывает на вашу новую усовершенствованную структуру OCB.

Очень важно иметь в виду, что ваш «расширенный» OCB должен содержать «стандартный» OCB в качестве своего первого элемента! Это так, потому что вспомогательная библиотека POSIX везде передает указатель на то, что она считает стандартным OCB — о вашем расширенном OCB ей ничего не известно, так что первый элемент данных, расположенный по этому указателю, должен соответствовать стандартному OCB.

Вот наш расширенный OCB:

typedef struct my_ocb {

 iofunc_ocb_t normal_ocb;

 int          my_extra_flags;

 ...

} my_ocb_t;

А вот код, иллюстрирующий, как переопределяются функции выделения и освобождения OCB в записи точки монтирования:

// Декларации

iofunc_mount_t mount;

iofunc_funcs_t mount_funcs;

// Задать в записи точки монтирования

// наши функции выделения/освобождения

// _IOFUNC_NFUNCS взята из .h-файла

mount_funcs.nfuncs = _IOFUNC_NFUNCS;

// Новая функция выделения OCB

mount_funcs.ocb_calloc = my_ocb_calloc;

// Новая функция освобождения OCB

mount_funcs.ocb_free = my_ocb_free;

// Настроить запись точки монтирования

memset(&mount, 0, sizeof(mount));

После этого остается только привязать запись точки монтирования к атрибутной записи:

...

attr.mount = &mount;

Функции my_ocb_calloc() и my_ocb_free() отвечают за выделение обнуленного расширенного OCB и освобождения OCB, соответственно. Вот их прототипы:

IOFUNC_OCB_T* my_ocb_calloc(resmgr_context_t *ctp,

 IOFUNC_ATTR_T *attr);

void my_ocb_free(IOFUNC_OCB_T *ocb);

Это означает, что функции my_ocb_calloc() передаются одновременно и внутренний контекст администратора ресурсов, и атрибутная запись. Функция отвечает за возврат обнуленного OCB. Функция my_ocb_free() получает OCB и отвечает за освобождение выделенной под него памяти.

Для этих двух функций имеются два интересных применения (которые ничем не связаны с выполнением расширения блока OCB):

• контроль распределения/освобождения блока OCB;

• обеспечение более эффективного распределения/ освобождения

Контроль за OCB

В этом случае вы можете просто «подключиться» к функциям распределения/освобождения и контролировать использование OCB (например, вам может быть необходимо ограничить суммарное количество OCB). Это может оказаться полезным, если вы не перехватываете функцию io_open(), но создание (и, возможно, удаление) OCB все-таки хотите контролировать.

Более эффективное распределение

Другое применение для переопределения встроенных библиотечных функций распределения/освобождения OCB может заключаться в том, что вы можете захотеть хранить OCB в свободном списке вместо использования библиотечных calloc() и free(). Если вы распределяете и освобождаете OCB с большой частотой, это может оказаться более эффективно.

Расширение атрибутной записи

Вы можете захотеть расширить атрибутную запись в случаях, когда вам необходимо хранить дополнительную информацию об устройствах. Поскольку атрибутные записи создаются «по каждому устройству», это означает, что любая дополнительная информация, которую вы сохраните там, будет доступна для всех OCB, относящихся к этому устройству (поскольку OCB содержит указатель на атрибутную запись). В расширенных атрибутных записях часто хранятся такие параметры как скорость передачи данных по последовательному каналу, и т.п.

Расширять атрибутную запись намного проще, чем OCB, потому что атрибутные записи в любом случае распределяются и освобождаются вашим кодом.

Вам нужно будет выполнить тот же трюк с переопределением атрибутной записи в заголовочных файлах, как мы это делали ранее при расширении OCB:

#define IOFUNC_ATTR_T struct my_attr

#include <sys/iofunc.h>

Затем вы фактически определяете содержимое ваших расширенных атрибутных записей. Отметьте, что расширенная атрибутная запись должна включать в себя стандартную атрибутную запись первым элементом — аналогично случаю с расширением OCB (и по тем же самым причинам).

Блокирование в пределах администратора ресурсов

До настоящего момента мы избегали разговоров о возможности блокирования в пределах администратора ресурсов. Мы предполагали, что у нас есть функция-обработчик (например, io_read()), и что данные будут доступны немедленно. А что если нам придется блокироваться в ожидании данных? Например, выполнение read() применительно к последовательному порту может потребовать блокирования до приема символа. Очевидно, что мы не можем предсказать, сколько может продолжаться такое ожидание.

Блокирование в пределах администратора ресурсов базируется на тех же самых принципах, которые мы обсуждали в главе «Обмен сообщениями» — в конце концов, администратор ресурса фактически является сервером, который обрабатывает рад четко определенных сообщений. Когда прибывает сообщение, соответствующее клиентскому запросу read(), оно прибывает вместе с идентификатором отправителя (receive ID), и клиент блокируется. Если у администратора ресурсов есть данные, он просто возвращает их клиенту, как мы уже видели в различных приведенных ранее примерах. Однако, если данные недоступны, администратор ресурсов должен будет удерживать этого клиента в заблокированном состоянии (конечно, если клиент для этой операции определил блокирующий режим), чтобы иметь возможность продолжить обработку других сообщений. Реально это означает, что поток администратора ресурсов, который принял сообщение от клиента, не должен блокироваться в ожидании данных — в противном случае это может закончиться для администратора ресурсов огромным числом заблокированных потоков, каждый из которых ожидал бы данные от некоего устройства.