Десятирица отражает опыт древних и современных исследователей физической картины мира. Ее схема представлена на рис. 1. Она включает в себя монады (E1), диады (E2, G1), триады (E3, G2, U1) и тетрады (E4, G3, U2, С1). Особенностью десятирицы является, во-первых, то, что каждый последующий элемент содержит все предыдущие. Например, элементы E2 и G1 содержат по два, а элементы E3, G2, М1 — по три внутренних элемента и т. д.
Рисунок 1 Схема десятирицы
Во-вторых, каждая из сторон этого треугольника тоже является десятирицей. Сторона с элементами E1, E2, E3, E4 отображает виды энергии, сторона с элементами E4, G3, М2, С1 представляет космическую систему с живой природой, а сторона с элементами E1, G1, М1, С1 свидетельствует о сложности единичных элементов соответствующих сред.
Уникальность десятирицы подтверждает хотя бы такой факт: ни один процесс сознательной деятельности любого человека или субъекта невозможно осуществить без источника энергии, механической основы, материального предмета труда и сознательного управления процессом. Следовательно, можно с уверенностью утверждать, что это основной шаблон, который всегда используется при образовании систем в природе. И в энергетике, и в механике, и в материи, и в живой природе.
Примеров построения реальных структур по схеме десятириц сколько угодно. Наиболее ярким представителем является структура атомов. Если проанализировать таблицу Менделеева, то станет очевидной схема построения структуры легких атомов, где четко прослеживается первая десятирица как по горизонтали, так и по вертикали. Вторая десятирица является неполной.
Таблица Менделеева показывает последовательность возникновения реально существующих химических элементов в зависимости от общего количества электронов. В соответствующих условиях мирового пространства возможно существование элементов с дополнительными оболочками, которые достраивают структуру до полной сдвоенной десятирицы.
Однако, таблица Менделеева не позволяет определить какой же элемент атома ответственен за его фазовые состояния, в которых находится одно и тоже вещество при изменениях температуры в достаточно больших пределах. Примером может служить вода, которая может быть льдом, жидкостью и паром.
Первичной средой существования является тепловая среда. Она оказывает влияние на полярные элементы атома, которые являются непостоянными элементами, поскольку изменяют свою форму в зависимости от температуры среды. Именно эти элементы и ответственны за переход атомов из одного фазового состояния в другое при изменении температуры.
Если полярный элемент является эллипсоидом, то он может иметь «выемку», от глубины которой зависит сила связи между одноименными атомами, в результате чего веществу обеспечивается твердость.
При повышении температуры эллипсоид переходит в тор, поперечное сечение которого изменяется от лемнискаты до двух кругов. Два тора противоположных знаков притягиваются друг к другу, но связи у них слабее, что делает возможным скольжение атомов друг относительно друга, делая вещество жидким.
Увеличение температуры повышает габариты тора, делает его непрочным, и он разрывается, образуя элемент, двигающийся по круговой орбите. В этом состоянии связи между атомами невозможны, поэтому вещество становится газообразным. Поскольку фазовые состояния всего лишь варианты, то в таблице Менделеева отражается только один из вариантов. Очевидно так происходит образование первой оболочки атома и переход его из одного фазового состояния в другое.
В связи с этим возникает вопрос к обозначению оболочек и орбит атомов. Во-первых, маловероятно, что в подгруппе 2p оболочки L находится 6 электронов. На одной орбите может находиться только один электрон. Следовательно, в оболочке L, очевидно, находятся полярные электроны и четыре орбиты с одним электроном. Поэтому подгруппу 2p следовало бы разбить на две. Измененные и дополнительные оболочки можно обозначить по-новому.
Первичные признаки систем
Система первичных элементов имеет четыре признака:
Количественный — система имеет только четыре структурных образования от одного до четырех взаимосвязанных элементов в каждом;
Метрологический — каждый элемент системы имеет свою меру: реальную величину, изменяющуюся в идеальных пределах;
Качественный — в системе всегда имеется три вида структурных образования по три элемента в каждом: каждый последующий элемент содержит все предыдущие, каждая связь имеет положительное, нейтральное и отрицательное состояния, каждый предыдущий элемент содержит последующий;