Вместе они образуют функциональную зависимость, как частный случай множественного комплекса. Два взаимосвязанных множества, которые являются этим целостным образованием, следует назвать комплексными множествами. Для множества реальных элементов служит числовая ось, а для множества их отображения применяется координатная (цифровая) ось как мера количества. Координатной ось в обыденном понимании — это шкала измерений. Числовые оси начинаются с нуля и заканчиваются бесконечно большим числом единиц. Числовой нуль — это число, которого нет, но с него начинаются все числа, образующие числовое множество.
Число либо есть, либо его нет. Это очень важное противоречие, на котором построена целая наука. Координатные же оси такого противоречия не имеют. Они предназначены для выражения цифрами на шкале измерений единиц измерения количества объектов. Здесь нуль и бесконечность числами не являются. Это всего лишь цифры между началом и концом меры чисел на координатной оси.
Особое понимание имеют бесконечно большие и бесконечно малые числа, характеризующие объекты и их количества. Бесконечно большими числами выражаются среды существования, а бесконечно малыми объектами — единичные элементы этой среды.
Вот тут и проявляется ярко выраженное несоответствие идеальных и реальных объектов, которое игнорирует различие между понятием «бесконечность» и «бесконечно большое число». Нельзя сказать, что никто не обращал на то внимания. Например, Г. Кантор применял понятия «оконеченной» или актуальной бесконечности. Но многие великие математики прошлого выступали категорически против этих понятий.
Поэтому и произошла фальсификация этого ключевого момента формирования математики. В частности, математики считают нуль числом и только, но это не совсем так. Функция, выражаемая числами, в осях координат никогда не может превратиться в бесконечность. Она может приобретать бесконечно большие или бесконечно малые, но конечные величины. Этим объясняется отсутствие в природе реального явления, которому соответствует понятие «сингулярность», как понятие — паразит.
Определенный вид характерен для множеств с вполне определенным количеством элементов. Это сфера обыденной деятельности человека в ситуации, когда используется в основном арифметический механизм. Этот вид особых комментариев не требует.
Однозначный вид характерен для множеств, содержащих элементы с относительными характеристиками. Любая определенная величина не совсем определенна и весьма неоднозначна. Ей нужна характеристика, которая бы позволяла сравнивать множества разной природы. Такая характеристика, очевидно, существует, например, процентное соотношение, но ею редко пользуются, хотя в ней есть очевидная необходимость.
Кое-что из однозначности есть в математике, где величина — это множество чисел, даже, если их бесконечно много. А множество характеризуется мощностью или кардинальным числом. Понятие мощности для конечного множества совпадает с понятием числа элементов этого множества. Кардинальное число — это количество элементов во множестве. В основе этого понятия лежат естественные представления о сравнении множеств. Но это все-таки не совсем однозначная характеристика, поскольку разные параметры имеют разные единицы измерения, поэтому их величины невозможно сравнить.
Несколько конкретизируют величины отношения одного элемента к их количеству в множестве, что характеризует его значимость или весомость. В шкале измерений это называется ценой деления. Для бесконечно больших величин характеристикой служат бесконечно малые относительные величины, которые в отличие от бесконечно малого объекта образуется как обратная бесконечно большой величины.
В разных множествах разное количество элементов, следовательно, разная значимость их элементов. Надо, чтобы значимости были одинаковы. Можно найти среднеарифметическое значение значимости элементов и по нему пересчитать мощность множеств, конкретика которых заключается в том, что элементы всех множеств одинаковы.
В экономике все без исключения ресурсы надо учитывать. Количественный учет начинается с классификации, которая является подсистемой, и отображает все, начиная с самых общих естественных систем и кончая конкретными системами искусственного происхождения, в т. ч. системами управления. Каждый классификационный вид имеет три уровня качества, которые обладают собственными единицами измерения. Но такая мера не позволяет сопоставить значимость различных ресурсов, поскольку абсолютные единицы измерения имеют разную природу, потому и разные предельные значения по уровням качества.