Выбрать главу

Числовая ось и ось координат вместе образуют функциональную зависимость. Для подсчета реальных элементов служит числовая ось, а для их отображения применяется координатная (цифровая) ось как мера количества. Координатной ось в обыденном понимании — это шкала измерений. Числовые оси начинаются с нуля и заканчиваются бесконечно большим числом единиц. Числовой нуль — это число, которого нет, но с него начинаются все числа, образующие числовое множество.

Число либо есть, либо его нет. Это очень важное противоречие, на котором построена целая наука. Координатные же оси такого противоречия не имеют. Они предназначены для выражения цифрами на шкале измерений единиц измерения количества объектов. Здесь нуль и бесконечность числами не являются. Это всего лишь цифры между началом и концом меры чисел на координатной оси.

Особое понимание имеют бесконечно большие и бесконечно малые числа, характеризующие объекты и их количества. Бесконечно большими числами выражаются среды существования, а бесконечно малыми объектами — наименьшие в природе единичные элементы материальной среды.

Вот тут и проявляется ярко выраженное несоответствие идеальных и реальных объектов, которое игнорирует различие между понятием «бесконечность» и «бесконечно большое число». Нельзя сказать, что никто не обращал на то внимания. Например, Г. Кантор применял понятия «оконеченной» или актуальной бесконечности. Но многие великие математики прошлого выступали категорически против этих понятий.

Поэтому и произошла фальсификация этого ключевого момента формирования математики. В частности, математики считают нуль числом и только, но это не совсем так. Функция, выражаемая числами, в осях координат никогда не может превратиться в бесконечность. Она может приобретать бесконечно большие или бесконечно малые, но конечные величины.

Этим объясняется отсутствие в природе реального явления, которому соответствует понятие «сингулярность». Нет такой точки, кроме нуля, в которой что-то стремится к бесконечности. А «что-то» — это бесконечно большое количество нулей. Корни этой дезинформации о сингулярности лежат там, где выдали бесконечно большую величину за бесконечность, а бесконечно малую величину — за нуль.

Так что, погрешили математики против истины, когда сказали, что «у функции f(x) = 1 / x есть особенная точка в ноле, там функция стремится к положительной бесконечности в правой части и к отрицательной бесконечности в левой части». Нет такой точки. На оси координат есть и нуль, и бесконечность, а функция таких точек не имеет. На вертикальной оси откладывается бесконечно большая величина, которая все-таки конечна, а на горизонтальной оси — точка с бесконечно малой величиной реального единичного объекта.

Для подсчета реальных элементов служит числовая ось, а для их отображения применяется координатная (цифровая) ось. Координатной ось — это шкала измерений. Поэтому координатные и числовые оси — это разные оси. Числовые оси начинаются с нуля и заканчиваются бесконечно большим числом единиц. Числовой нуль — это число, которого нет, но с него начинаются все числа, образующие числовое множество.

Число либо есть, либо его нет. Это очень важное противоречие, на котором построена целая наука. Координатные же оси такого противоречия не имеют. Они предназначены для выражения цифрами на шкале измерений единиц измерения количества объектов. Здесь нуль и бесконечность числами не являются. Это всего лишь цифры между началом и концом меры чисел на координатной оси, которая имеет природу пустоты.

Проблема в том, что отождествляются два совершенно разных понятия: «бесконечность» и «бесконечно большая или бесконечно малая величины». Когда речь идет о бесконечности, необходимо различать ее виды.

Абсолютная бесконечность — это неопределенная количественная характеристика области существования мироздания с центром посредине. Ее можно назвать неопределенная, или, как выразился Гегель, «дурная» бесконечность Она недоступна нашему сознанию и его не имеет смысла обсуждать. Альтернатива бесконечности — это нуль. Бесконечно большое количество бывает, а бесконечно малого количества не бывает.

Если бесконечность имеет количественный смысл, то бесконечно большие и бесконечно малые величины имеют размерный смысл. Это могут быть физические объекты соответствующих размеров, а могут быть величины. Бесконечно большими объектами нам представляются космические системы, а бесконечно малыми — наименьшие в природе единичные теплоносители энергетической среды.