Важно подчеркнуть, что фактический материал генетики в 1935–1936 годах не решал вопросов о биохимической природе генов, механизме их саморепродукции, механизме действия и т. п., решенных наукой только в 1953–1961 годах. Однако сам факт существования генов неизбежно вытекал из тех экспериментальных данных, которые были получены при изучении закономерностей расщепления гибридов и изучения клетки.
Это настойчиво подчеркивалось в дискуссионных выступлениях многих советских генетиков. Уместно привести энергичное выступление по этому вопросу академика А. С. Серебровского на дискуссионной сессии ВАСХНИЛ в декабре 1936 года: «На законе кратных отношений при расщеплении выросла вся генетика. Те, кто пытается объявить генетику фантазией, механистикой, видеть в ней натяжки и т. д., должны прежде всего как-то ответить на этот вопрос о кратных отношениях. Ни одна теория наследственности не может уже отвертеться и уклониться от этой кратности. Если эта теория на может объяснить кратности, она не теория, а болтовня и не может претендовать на какое-либо внимание.
Некоторые решают вопрос очень просто: расщепление-де зависит от условий развития, одни растения реагируют на внешние условия одним образом, другие — другим, поэтому-де и образуются ресщепления. Ничего из этого не выйдет! Надо без уверток ответить, почему возникает именно 3:1, а не любое другое отношение: 3,40:1; 3,5:1; 3,75:1 и т. д.
Ведь суть вопроса именно в том и состоит. Факты говорят о том, что мы имеем дело с точными отношениями 3:1, и если имеются малейшие уклонения от этой точной кратности, оно легко объясняется посторонними для проблемы причинами.
Нужно бросить болтовню и безоговорочно признать, что закон кратных отношений яри наследовании — это фундаментальный биологический факт. Крупнейшее научное открытие. Признать и сделать из него все выводы. Какие же выводы?
Первый вывод, что никакого селективного оплодотворения, т. е. выбора гаметами друг друга при оплодотворении, не существует во всех тех случаях, когда кратные отношения имеют место. Если бы гаметы выбирали друг друга «по любви», как фантазируют И. И. Презент и Т. Д. Лысенко, это прежде всего нарушило бы кратные отношения. Несколько случаев селективного оплодотворения генетикой открыто и открыто именно потому, что в этих редких случаях отношение 3:1 и т. п. закономерно нарушается. Отношение же 3:1 как раз и говорит о том, что гаметы встречаются друг с другом не по выбору, не «по любви», а в порядке случайности.
Второй главный вывод — об объективном существовании наследственных единиц, генов. Какой вывод смогли и должны были сделать химики из закона кратных отношений? Вывод о том, что объективно существуют единицы вещества, атомы, которые и соединяются друг с другом. Могла ли химия не сделать этого вывода? Нет, не могла, так как без признания единиц-атомов было бы невозможно объяснить кратность отношений. Могла ли генетика не сделать вывода об объективном существовании единиц-генов? Нет, не могла, так как иначе остался бы необъяснимым факт кратных расщеплений. Ген, необходимый для развития зеленой окраски овса, в нашем случае либо попадает, либо не попадает в потомство. Он попадает или не попадает целиком, как единица. Как в химии, так и в биологии кратные отношения привели к крупнейшему открытию о наличии единиц: единиц вещества — атомов в химии, единиц наследственности — генов в биологии.
Третий вывод — об устойчивости генов. Какой вывод сделала химия из факта кратных отношений? Вывод об устойчивости атомов, о том, что их можно вводить в соединение, выводить из соединения без потери их индивидуальности. Могла ли химия не сделать этого вывода? Не могла, потому что, если бы эти атомы были единицами неустойчивыми, изменяющимися при нагревании, растворении и прочих простых воздействиях на них, их нельзя было бы соединять или разъединять обратно, невозможно было бы получать кратные отношения…» (СеребровскийЛ. С. Генетика и животноводство // Спорные вопросы генетики и селекции. М., 1937. С. 76–78).