Выбрать главу

Множество экспериментов доказало значение языка для решения проблем. Люди, которые записывают или вербализуют проблемы, демонстрируют куда лучшие результаты, чем те, кто трудится молча. Рассмотрим следующий пример. Положим четыре карточки лицевой стороной вверх – на них написано, соответственно, Е, К, 4 и 7. Каждая карточка имеет букву с одной стороны и цифру с другой. Затем предлагается правило, истинность которого нужно доказать: «Если с одной стороны написана гласная буква, то на другой будет четная цифра». Предлагается перевернуть две и только две карточки, чтобы определить, справедливо ли это правило.

Если вы трудились над вопросом молча, почти наверняка упустили ответ, как и более 90 процентов людей, решающих эту задачу. Большинство понимают, что нет никакого смысла трогать карточку с согласной, поскольку она не имеет отношения к заданию. Они понимают и то, что необходимо перевернуть карточку с гласной, поскольку нечетная цифра на ее обратной стороне немедленно опровергает правило. Но многие делают роковую ошибку и переворачивают карточку с четной цифрой, поскольку она упоминается в задании. Но на самом деле совершенно не важно, окажется на обратной стороне этой карточки гласная или согласная, ведь правило не говорит о том, что должно соответствовать четным цифрам. Напротив, необходимо перевернуть карточку с нечетной цифрой. Если там окажется согласная, результат не имеет значения. Но если карточка будет содержать гласную, то правило будет опровергнуто, поскольку она, согласно этому правилу, должна содержать четную, а не нечетную цифру.

То, что задача оказывается довольно сложной (даже несмотря на то, что после первого же объяснения начинает выглядеть очевидной), должно привлечь наше внимание к формулировке проблемы. Содержание этой конкретной задачи определило, как мы работали, казалось бы, над простой логической задачей. Тот, кто формулировал ее фразой «Каким образом я могу оценить это задание?» и мог посмотреть на нее с различных углов зрения, имел больше шансов на решение.

Гений часто проявляется в том, чтобы найти новый взгляд на проблему, каким-то образом ее реструктурируя. Когда Ричард Фейнман, нобелевский лауреат по физике, заходил в тупик при решении задачи, он старался взглянуть на нее по-новому. Если один способ не работал, переключался на следующий. Что бы ни случалось, он всегда находил иные варианты. Фейнман за десять минут успевал сделать то, что у обычного физика отняло бы год, потому что всегда использовал множество методов рассмотрения задачи.

Важно не упорствовать в желании применить один конкретный подход. Рассмотрим следующую интересную задачку, снова с четырьмя карточками. На этот раз на одной стороне будет написано название города, а на другой – средство передвижения. На карточках написаны, соответственно, слова «Лос-Анджелес», «Нью-Йорк», «самолет» и «машина»; правило звучит так: «Каждый раз, отправляясь в Лос-Анджелес, я пользуюсь самолетом».

Хотя это правило совершенно идентично варианту с цифрами и буквами, его проверка обычно не вызывает сложности. Примерно 80 процентов испытуемых сразу же понимают, что необходимо перевернуть карточку «машина». Судя по всему, им очевидно, что если карточка «машина» с обратной стороны подписана «Лос-Анджелес», то это немедленно опровергает правило, в то время как совершенно не имеет значения обратная сторона карточки «самолет», поскольку по правилу в Нью-Йорк можно добираться любым видом транспорта.

Почему же 80 процентов людей правильно решают эту задачу, в то время как лишь 10 процентов справляются с совершенно аналогичной в варианте с числами и буквами? Благодаря изменению контекста (город и средства передвижения вместо цифр и букв) мы переформулировали проблему, что немедленно сказалось на нашем мышлении. Структура проблемы окрашивает взгляд на мир и способы мышления.

Как можно быстрее сложите в голове приведенные ниже числа. Не пользуйтесь карандашом и бумагой.

Почему-то наш мозг с трудом справляется со сложением чисел в этом конкретном порядке, особенно если в школе учили складывать с остатками. У многих в ответе получается 5000. Это неверно. Правильный ответ – 4100. Похоже, даже структура простейшей арифметической задачи способна ввести наш мозг в заблуждение.

У маленького Эйнштейна был любимый дядюшка Якоб, который учил его математике, меняя внешний вид заданий. Например, из алгебры он делал игру – охоту на маленькое загадочное животное (Х). В результате выигрыша (если задача решалась) Альберт «ловил» зверя и называл его истинное имя. Изменив содержание задач и превратив математику в игру, Якоб учил мальчика подходить к проблемам как к игре, а не как к работе. Впоследствии Эйнштейн концентрировался на своих занятиях с той же интенсивностью, которую большинство приберегают для игр и хобби.