Боевая часть ракеты была заменена головными отсеками ГЛЛ «Холод», в которых размещались система управления полетом, емкость для жидкого водорода с системой вытеснения, система регулирования расхода водорода с измерительными устройствами и, наконец, экспериментальный ГПВРД Э-57 осесимметричной конфигурации.
Первоначально концепция и конструкция экспериментального ГПВРД были разработаны ЦИАМ и Тураевским МКБ «Союз». Последний вариант конструкции выполнен воронежским КБХА и ЦИАМ.
Экспериментальный ГПВРД Э-57 был предназначен для работы в диапазонах полетных чисел М=3,5-6,5 и высот 15-35 км. Он состоит из осесимметричного трехскачкового воздухозаборника, коаксиальной камеры сгорания и кольцевого сопла небольшой степени расширения. Обечайка и центральное тело образуют кольцевую камеру сгорания со специальным профилированием по длине. На стенках камеры размещены три пояса подачи водорода. Первый пояс подачи с нишевым стабилизатором пламени расположен на центральном теле. Здесь водород подается в камеру сгорания через 42 отверстия диаметром 1,7 мм. Второй пояс со ступенчатым стабилизатором пламени расположен на обечайке, третий пояс с нишевым стабилизатором – на центральном теле. Во втором и третьем поясах также имеются по 42 отверстия, но диаметром 2,1 мм. В этих поясах установлены стандартные авиационные свечи электрической системы воспламенения.
Камера сгорания имеет регенеративную систему охлаждения. Жидкий водород из бортовой емкости проходит по каналам в стенках обечайки и центрального тела, охлаждает огневые стенки, направляется через заслонки регулятора в пояса подачи и далее – через 126 упомянутых отверстий – в полость камеры сгорания.
Напряженность режима работы камеры сгорания достаточно полно характеризуется двумя цифрами: температура стенок достигает 1200К, а водород, первоначально жидкий, охлаждая камеру сгорания, нагревается до 1000К.
На стенках воздухозаборника, центрального тела и обечайки размещены 68 отверстий для измерения давления в проточном тракте и 25 хромель-алюмелевых и хромель- копелевых термопар, предназначенных для измерения температуры стенки. Кроме того, 20 термопар различного типа установлены в тракте охлаждения, магистралях подачи и бортовой емкости водорода.
Бортовая емкость для жидкого водорода состоит из внутреннего сосуда и наружного кожуха, связанных между собой опорами по торцам. В пространстве между ними создано разрежение с остаточным давлением менее 102 мм рт.ст. для термоизоляции внутреннего сосуда. Бортовая емкость, созданная специально для ГЛЛ «Холод», прошла большой объем автономной отработки и без замечаний работала в проведенных полетах.
К настоящему времени в общей сложности проведено семь полетов. Первые два полета с габаритно-весовыми макетами головных отсеков по программе летно-конструкторских испытаний позволили отладить новую систему управления ракеты для обеспечения требуемой траектории. В пяти полетах использовался реальный ГПВРД с подробной препарировкой проточного тракта камеры сгорания. В трех полетах в камеру сгорания ГПВРД подавался жидкий водород.
Время работы ГПВРД в полете увеличивалось от одного испытания к другому и в последнем полете составило 77 с, что соответствовало максимальному времени полета ракеты комплекса С-200. Установлено, что работоспособность камеры сгорания сохранялась и после ее выключения.
Гиперзвуковой экспериментальный летательный аппарат ГЭЛА, демонстрировавшийся МКБ «Радуга» на МАКС-99. По мнению экспертов, в основе аппарата – стратегическая крылатая ракета воздушного базирования Х-90, разработка которой была прекращена в годы перестройки
РЕЗУЛЬТАТЫ ЛЕТНЫХ ИСПЫТАНИЙ ГПВРД НА ГЛЛ «ХОЛОД» Основные характеристики Дата испытания 27.11.91 17.11.92 1.03.95 1.08.97 12.10.98* Число М 5,6 5,35 5,8 6,2 6,5 |Скорость полета, м/с 1653 1535 1712 1832 1832 Высота полета, км 35 22,4 30 33 33 Время работы ГПВРД, с 27,5 41,5 77* эксперимент с ГЛЛ «Холод» в 1998 г. проводился по контракту с НАСА
Работоспособность водородных ГПВРД была продемонстрирована на участке типовой траектории разгона до числа М=6,5. При этом на входе в ГПВРД воспроизводились реальные условия полета с естественным уровнем турбулентности и структурой потока невозмущенной атмосферы.
Анализ режимов течения и горения в проточном тракте ГП ВРД производился на основе информации, полученной в полете от датчиков, измерявших параметры в многочисленных точках проточного тракта. Как показала обработка полученной информации, на большей части длины тракта скорость потока соответствовала числу М= 1 – 1,5. Соответственно, полнота сгорания на режиме сверхзвука находилась в диапазоне 0,7-0,9. В ходе последнего испытательного полета полнота сгорания на режиме сверхзвукового горения составила 0,83 при коэффициенте избытка воздуха 0,85. Регистрация параметров в проточном тракте позволила провести идентификацию и верификацию математических моделей, описывающих газодинамику проточного тракта ГПВРД.