Проекты 50-60-х гг. Д-20, Д-21 и Д-30Ф опережали свое время – еще долгие годы в сверхзвуковой авиации господствующее положение занимали одноконтурные ТРД. Однако требование многорежимности (сочетание дозвуковых и сверхзвуковых скоростей полета), лучшие эксплуатационные характеристики и ряд других преимуществ привели к тому, что и в сверхзвуковой авиации всего мира двухконтурные двигатели в 70-х годах стали занимать доминирующее положение.
Соловьев вспоминал: «Все равно боялись страшно. Все совещания у Д.Ф. Устинова (в то время министр обороны) начинались с дискуссии: можно ли сделать такой двигатель? Не верили! Все время поднимали то один вопрос, то другой… Но П.Ф. Батицкий (главком ПВО) сильно давил, и Устинов, видимо, хотел такую машину получить. На одном из таких совещаний Устинов объявил, что будем делать этот двигатель! А двигатель Туманского отложили в сторону».
В короткое время, используя опыт, полученный при создании демонстрационного двигателя Д-30Ф. был разработан проект нового сверхзвукового Д-30Ф6. Он проектировался с использованием аэродинамики компрессоров двигателей Д-30 (для Ту-134) и Д-30КУ/КП (для Ил-62М и Ил-76) при необходимых конструктивных изменениях, связанных с новыми условиями эксплуатации.
При проектировании Д-30Ф6 для увеличения тяги был принят газогенератор в размерности двигателя Д-30КУ (без первой ступени КВД), а КНД – от двигателя Д-30 с добавлением одной ступени впереди на расход воздуха 150 кг/с.
При разработке проекта были выбраны оптимальные параметры двигателя, в частности степень двухконтурности 0,5, ставшая классической для многих последующих проектов двигателей подобного назначения у нас в стране и за рубежом. Были определены параметры и программы регулирования трех контуров двигателя: основной контур, контур регулирования сопла и контур регулирования расхода топлива форсажной камеры, обеспечивающие поддержание оптимальных тягово-экономических и эксплуатационных характеристик двигателя. В частности, разработана специальная программа повышения температуры газа перед турбиной с увеличением скорости полета самолета. Это обеспечило получение требуемой тяги во второй критической точке: на высоте 20 км и при скорости полета 2500 км/ч. Позже ученые назвали это «температурной раскруткой». Таким образом, была разработана методика получения «крутой» скоростной характеристики двигателя, ставшая также классической для последующих проектов.
Создание системы автоматического управления и топливопитания – особая страница в истории Д-30Ф6. Тогда впервые в отечественной практике был разработан и внедрен электронный цифровой вычислитель в качестве основного регулятора режимов работы ТРДД (РЭД-3048). Электронновычислительное оборудование было создано специалистами Пермского агрегатного конструкторского бюро (ПАКБ) под руководством А.Ф. Полянского, а затем Г.И. Гордеева.
По причине низкой в то время надежности элементной базы на двигателе Д-30Ф6 были установлены две системы управления: основная – цифровая – РЭД-3048 и дублирующая – гидромеханическая САУ. Идеология, алгоритмы и доводка электронно-гидромеханической САУ и топливопитания выполнялись совместно МКБ и ПАКБ (в настоящее время – ОАО «СТАР»).
Впервые для анализа нестационарного теплового состояния топливо-масляной системы высокотемпературного двигателя была применена математическая модель, что позволило не отправлять двигатель в ЦИАМ для испытания на высотном стенде. Тепловое состояние системы в полетных условиях было проанализировано с помощью мат.чодели. Полученные данные были увязаны с результатами стендовых. а затем и летных испытаний. Данная работа была высоко оценена специалистами ЦИАМ и в дальнейшем зачтена на госиспытаниях двигателя.
Большие трудности в процессе доводки двигателя представляла основная камера сгорания. В то время в мировом авиадвигателестроении имелись камеры сгорания, работающие при температуре газа до 900К. а для Д-30Ф6 требовалось обеспечить эффективную работу при температуре 1024К.
В результате интенсивных научно- исследовательских, расчетных и экспериментальных работ совместно с ЦИАМ был найден ряд эксклюзивных решений. Для исключения горения топлива вдоль стенок жаровых труб была введена подача охлаждающего воздуха через гофрированные кольца между секциями жаровых труб. Для формирования равномерного поля температур на входе в турбину предусмотрели перераспределение подвода воздуха с помощью спецотверстий в зоне смешения жаровой трубы. Первоначальная разборная конструкция форсунки не обеспечивала герметичности при температуре газа более 950К. Только разработка и внедрение сварной конструкции форсунки с применением электронно-лучевой сварки обеспечили ее полную герметичность.
Для обеспечения работоспособности и требуемого ресурса турбины высокого давления при температуре 1640К были отработаны конструкции сопловых и рабочих лопаток 1-й и 2-й ступеней с конвективно-пленочным и конвективным охлаждением, для чего необходимо было увеличить хладоресурс воздуха, отбираемого на охлаждение турбины. Для этого впервые в отрасли был разработан и применен воздухо-воздушный теплообменник в наружном канале двигателя.
Снижение температуры охлаждающего воздуха на 20-40% позволило повысить температуру газа перед турбиной на 90-180К. что доказало эффективность принятых решений.
При доводке двигателя остро стояла проблема исследования виброгорения в форсажной камере. Чтобы исключить дорогостоящие и продолжительные испытания на высотном стенде ЦИАМ или в полете, были проведены исследования с помощью адекватной «увязки» математической модели двигателя, которые показали возможность имитации эксплуатационных условий работы форсажной камеры на стендах МКБ. Для этого на базе КБ были созданы два специальных стенда. Кроме того, впервые в отечественной практике в конструкцию двигателя была введена система впрыска и розжига топлива в форсажную камеру методом «огневой дорожки».
Интересна и история создания и доводки многорежимного регулируемого сопла.
Двигатели Д-30Ф6 в сборочном цехе
Первоначально сопло для Д-30Ф6 разработало ТМКБ «Союз», имевшее опыт создания регулируемых сопел. Это была красивая, профессионально спроектированная конструкция. Однако первые летные испытания двигателя выявили ее недостатки: повышенные утечки, недостаточная жесткость (из-за чего «раздувалось» критическое сечение сопла), превышение по массе и т.д.
Коллеги пермяков поправили жесткость. а с утечками и повышенной массой сопла не справились или, возможно, посчитали капризом. Длительная безрезультатная переписка, переговоры… И настал момент, когда Соловьев принял решение: «Делать сопло самим!»
Опыта разработки таких узлов пермское МКБ не имело, но за работу принялись с азартом, проштудировали горы технической литературы, учли наработки московских коллег. Конечно, и в собственной конструкции проявились недостатки, но их устраняли быстрее и эффективнее.
Например, для обеспечения летных характеристик МиГ-31 было необходимо добиться регулирования работы сопла в чрезвычайно широком диапазоне. Дело в том, что при максимальной скорости полета степень понижения давления газа в сопле двигателя меняется практически в 20 раз. При этом степень расширения сопла (отношение площади выходного сечения к площади критического сечения) – более чем в 3 раза. В таких условиях возникала потеря газодинамической устойчивости, тряска сопла (так называемая «бу-буляция»). Проблему решили организацией перепуска атмосферного воздуха в проточную часть двигателя на режимах неустойчивой работы без ухудшения характеристик сопла на основных режимах, с помощью специальных клапанов на створках сопла, конструкция которых была запатентована.
Другой проблемой, связанной с соплом двигателя, стало снижение управляемости самолета на больших скоростях и малых высотах. Экспериментально было выявлено, что на этих режимах нежесткая конструкция сопла не обеспечивает синхронизацию его элементов. Поэтому происходит самопроизвольное изменение положения критического сечения сопла и. соответственно, изменение вектора тяги двигателя. Проблему решили изменением кинематики системы управления створками, что обеспечило газодинамическую синхронизацию створок сопла, устойчивость и стабильность вектора тяги двигателя.