Выбрать главу

В земной коре есть некоторые минералы, которые обладают слабыми магнитными свойствами. Когда лава, вытекающая из вулканов, остывает и твердеет, в таких минералах образуются кристаллы, ориентирующиеся на север и юг, т. е. в направлении магнитных силовых линий. Мало того, у каждого кристалла есть свой северный полюс, указывающий на север, и южный полюс на противоположном конце, который указывает на юг. (Можно отличить северный полюс от южного, пробуя кристалл обыкновенным магнитом.)

В 1906 г. французский физик Бернар Брюнес (1869–1930), исследуя вулканические породы, заметил, что в некоторых случаях кристаллы были намагничены в направлении, противоположном теперешнему магнитному полю: северный полюс указывал на юг, а южный — на север. Сначала это открытие игнорировали, так как в нем, казалось, не было никакого смысла, но со временем накопились и другие факты, и теперь этот факт нельзя ни отрицать, ни игнорировать.

Что же случилось с породами? Почему они ориентированы таким «ошибочным» образом? Да потому, оказывается, что магнитное поле Земли направлено бывает периодами то в одну, то в другую сторону. Породы, которые остывают и кристаллизуются, пока земное магнитное поле направлено в одну сторону, кристаллами своими показывают в ту же сторону. Когда же магнитное поле повернулось, у него уже недостает силы повернуть застывшие кристаллы, и они оказываются ориентированными «ошибочно».

В 1960-х годах изучались магнитные свойства морского ложа. Ложе Атлантического океана раздалось до нынешних размеров в результате поднятия расплавленного материала из недр Земли через длинную изломанную трещину, проходящую как раз по середине океана. Породы, лежащие вблизи этой трещины, — это самые новые и совсем недавно окаменевшие породы. По мере удаления от трещины в обе стороны породы становятся все более и более старыми. Если изучить магнитные свойства этих пород, то окажется, что ближайшие к трещине породы показывают «правильное» направление, т. е. попутно с теперешним направлением магнитного поля. Дальше в сторону от расщелины они показывают «неверно», еще дальше — снова «верно», еще дальше — снова «неверно» и т. д. Иначе говоря, по обе стороны от трещины есть полосы пород «правильной» и «неправильной» ориентаций, причем каждая сторона есть зеркальное отражение другой.

Измерение возраста этих пород показало, что магнитное поле обращалось через неодинаковые промежутки времени: иногда между обращениями пролегал интервал всего в 50 000 лет, а порой и 20 млн. лет. Очевидно, здесь имеет место вот что: интенсивность магнитного поля периодически падает до нуля, а затем продолжает падать и «ниже нуля», т. е. меняя свое направление и становясь в нем все сильнее и сильнее. Затем оно склоняется к нулю опять, снова меняя направление, и т. д.

Что заставляет магнитное поле повышать и понижать свою интенсивность так нерегулярно и изменять свое направление при каждом прохождении через нуль? Ученым остается только догадываться. Такая ближайшая «перекидка» должна произойти где-то в 4000 г. В течение нескольких столетий до и после этого магнитное ноле Земли будет настолько слабым, что не в состоянии будет отклонять космические лучи сколь-нибудь действенным образом. Вместе с увеличением или снижением силы магнитного поля увеличивается или снижается бомбардировка Земли космическими лучами. Она снижается до минимума, когда магнитное поле наиболее интенсивно, и вырастает до максимума, когда магнитное поле снижается до нуля.

Когда напряженность магнитного поля равна пулю, а падение космических лучей достигает максимума, максимальными становятся и мутации, и генетическая нагрузка. Именно тогда отдельным видам грозит возможность вымирания.

ВЕЛИКИЕ ВЫМИРАНИЯ

Конечно, виды вымирали на протяжении всей истории жизни на Земле, но вымирание это не было равномерным, постоянным во времени. Палеонтологи, изучая ископаемые остатки, сталкиваются с одним обстоятельством: существовали периоды, когда вымирание было необычно высоким, были даже периоды, когда за сравнительно короткий промежуток времени вымирало большинство живущих видов.

Эти периоды называют «великими вымираниями». Наиболее известный из таких периодов имел место 65 млн. лет назад, когда громадные рептилии, населявшие тогда Землю, включая множество существ, называемых динозаврами, вместе с другими видами были обречены на вымирание.

Не могли ли эти великие вымирания совпасть с периодами нулевой напряженности земного магнитного поля? Не идем ли и мы, в свой черед, к такому великому вымиранию в 4000 г. от рождества Христова, не исчезнет ли человечество с лица Земли за этим рубежом?

По-видимому, нам не следует этого бояться. Хотя мы не можем проследить изменения магнитного поля в прошлом за многие миллионы лет, мы знаем, что за последние несколько десятков миллионов лет такие изменения были и они не обязательно сопровождались чрезмерно высоким вымиранием. Поэтому ожидать через 2000 лет катастрофы, связанной с генетической нагрузкой, как будто нет оснований.

Это неудивительно. Магнитное поле Земли не очень велико, и частицы космических лучей, заряженные очень высокой энергией, имеют совсем небольшое отклонение. Следовательно, когда напряженность магнитного поля падает, воздействие космических лучей усиливается, но ненамного. Но что если интенсивность космических лучей повысилась бы безотносительно к земному магнитному полю? Что если по соседству разорвалась бы сверхновая? Тогда бы на Землю обрушился огромный поток частиц космических лучей, и это могло бы стать причиной многочисленных вымираний.

Представьте себе крупную сверхновую, взрывающуюся в десяти парсеках от Земли. Она светила бы, пусть не долго, в 1/600 яркости нашего Солнца и была бы, таким образом, самым ярким предметом в небе, включая Луну. На противоположной от Солнца стороне Земли ночь тогда превратилась бы в подобие сумеречного дня. В какой бы части неба она ни загорелась, весьма ощутимо нагрела бы Землю и сделала жизнь для всех нас очень неудобной.

И что особенно важно, интенсивность космических лучей усилилась бы в сотни и тысячи раз сравнительно с теперешней, и этот повышенный уровень мог бы удерживаться долгие годы. Отсюда всевозможные неприятные последствия: озоновый слой тогда бы ослабел и возросло бы ультрафиолетовое излучение, а это не менее опасно для жизни, чем сами космические лучи. Часть атмосферного азота и кислорода могла бы соединиться, и оксид азота, образовавшийся при этом в верхних слоях атмосферы, частично закрыл бы для нас солнечный свет. После первоначального подъема упала бы температура, а вместе с ней и уровень осадков. И конечно же, резко возросла бы частота мутаций.

И если бы все это случилось в тот период, когда напряженность магнитного поля Земли была на нуле или вблизи него, перечисленные эффекты усилились бы еще больше со всеми вытекающими отсюда отрицательными последствиями. Неужели великие вымирания были результатом совпадения близкой сверхновой и временного исчезновения магнитного поля?

На расстоянии до десяти парсек от нас нет звезд, которые могли бы стать сверхновыми, так что на первый взгляд такое предположение может показаться смешным. Однако Солнце движется, как и все звезды нашей Галактики. Это движение несет звезды вокруг галактического центра, но движение звезд отнюдь не похоже на слитное звучание хора. Звезды, находящиеся дальше от центра, движутся медленнее, чем звезды более близкие к нему. У одних (как у нашего Солнца) орбиты почти круговые, у других они подчеркнуто эллиптические. Одни движутся в общей плоскости Млечного Пути, другие в плоскостях, сильно наклоненных к ней.