However, this view ignores the fact that the human male reproductive tract, and every other biological function of both women and men, continue to function in most people for many decades after age forty. One would therefore have to assume that every other biological function was able to adjust quickly to our new long life span, leaving unexplained why female reproduction was uniquely incapable of doing so. The claim that formerly few women survived until the age of menopause is based on paleode-mography, that is, on attempts to estimate age at time of death in ancient skeletons. Those estimates rest on un-proven, implausible assumptions, such as that the recovered skeletons represent an unbiased sample of an entire ancient population, or that ancient adult skeletons really can be aged accurately. While paleodemographers' ability to distinguish the ancient skeleton of a ten-year-old from that of a twenty-five-year-old is not in question, the ability they claim to distinguish an ancient forty-year-old from a fifty-five-year-old has never been demonstrated. One can hardly reason by comparison with skeletons of modern people, whose different lifestyles, diets, and diseases surely make their bones age at different rates from the bones of ancients.
A second objection acknowledges human female menopause as a possibly ancient phenomenon but denies that it is unique to humans. Many or most wild animals exhibit a decrease in fertility with age. Some elderly individuals of a wide variety of wild mammal and bird species are found to be infertile. Many elderly female individuals of rhesus macaques and certain strains of laboratory mice, living in laboratory cages or zoos where their lives are considerably extended over expected spans in the wild by gourmet diets, superb medical care, and complete protection from enemies, do become infertile. Hence some biologists object that human female menopause is merely part of a widespread phenomenon of animal menopause. Whatever that phenomenon's explanation, its existence in many species would mean that there is not necessarily anything peculiar about menopause in the human species requiring explanation.
However, one swallow does not make a summer, nor does one sterile female constitute menopause. That is, detection of an occasional sterile elderly individual in the wild, or of regular sterility in caged animals with artificially extended life spans, does nothing to establish the existence of menopause as a biologically significant phenomenon in the wild. That would require demonstrating that a substantial fraction of adult females in a wild animal population become sterile and spend a significant portion of their life spans after the end of their fertility.
The human species does fulfill that definition, but only one or possibly two wild animal species are definitely known to do so. One is an Australian marsupial mouse in which males (not females) exhibit something like menopause: all males in the population become sterile within a short time in August and die over the next couple of weeks, leaving a population that consists solely of pregnant females. In that case, however, the postmenopausal phase is a negligible fraction of the total male life span. Marsupial mice do not exemplify true menopause but are more appropriately considered an example of big-bang reproduction, alias semelparity-a single lifetime reproductive effort rapidly followed by sterility and death, as in salmon and century plants. The better example of animal menopause is provided by pilot whales, among which one-quarter of all adult females killed by whalers proved to be postmenopausal, as judged by the condition of their ovaries. Female pilot whales enter menopause at the ago of thirty or forty years, have a mean survival of at least fourteen years after menopause, and may live for over sixty years.
Menopause as a biologically significant phenomenon is thus not unique to humans, being shared at least with one species of whale. It would be worth looking for evidence of menopause in killer whales and a few other species as possible candidates. But still-fertile elderly females are often encountered among well-studied wild populations of other long-lived mammals, including chimpanzees, gorillas, baboons, and elephants. Hence those species and most others are unlikely to be characterized by regular menopause. For example, a fifty-five-year-old elephant is considered elderly, since 95 percent of elephants die before that age. But the fertility of fifty-five-year-old female elephants is still half that of younger females in their prime.
Thus, female menopause is sufficiently unusual in the animal world that its evolution in humans requires explanation. We certainly did not inherit it from pilot whales, from whose ancestors our own ancestors parted company over fifty million years ago. In fact, we must have evolved it since our ancestors separated from those of chimps and gorillas seven million years ago, because we undergo menopause and chimps and gorillas appear not to (or at least not regularly).
The third and last objection acknowledges human menopause as an ancient phenomenon that is unusual among animals. Instead, these critics say that we need not seek an explanation for menopause, because the puzzle has already been solved. The solution (they say) lies in the physiological mechanism of menopause: a woman's egg supply is fixed at her birth and not added to later in her life. One or more eggs are lost by ovulation at each menstrual cycle, and far more eggs simply die (termed atresia). By the time a woman is fifty years old, most of her original egg supply has been depleted. Those eggs that remain are half a century old, increasingly unresponsive to pituitary hormones, and too few in number to produce enough estra-diol to trigger the release of pituitary hormones.
But there is a fatal counterobjection to this objection. While the objection is not wrong, it is incomplete. Yes, depletion and aging of the egg supply are the immediate causes of human menopause, but why did natural selection program women such that their eggs become depleted or unresponsive in their forties? There is no compelling reason why we could not have evolved twice as large a starting quota of eggs, or eggs that remain responsive after half a century. The eggs of elephants, baleen whales, and possibly albatrosses remain viable for at least sixty years, and the eggs of tortoises are viable for much longer, so human eggs could presumably have evolved the same capability.
The basic reason why the third objection is incomplete is because it confuses proximate mechanisms with ultimate causal explanations. (A proximate mechanism is an immediate direct cause, while an ultimate explanation is the last in the long chain of factors leading up to that immediate cause. For example, the proximate cause of a marriage breakup may be a husband's discovery of his wife's extramarital affairs, but the ultimate explanation may be the husband's chronic insensitivity and the couple's basic incompatibility that drove the wife to affairs.) Physiologists and molecular biologists regularly fall into the trap of overlooking this distinction, which is fundamental to biology, history, and human behavior. Physiology and molecular biology can do no more than identify proximate mechanisms; only evolutionary biology can provide ultimate causal explanations. As one simple example, the proximate reason why so-called poison-dart frogs are poi-sonous is that they secrete a lethal chemical named batra-chotoxin. But that molecular biological mechanism for the frogs' poisonousness could be considered an unimportant detail because many other poisonous chemicals would have worked equally well. The ultimate causal explanation is that poison-dart frogs evolved poisonous chemicals because they are small, otherwise defenseless animals that would be easy prey for predators if they were not protected by poison.
We have already seen repeatedly in this book that the big questions about human sexuality are the evolutionary questions about ultimate causal explanation, not the search for proximate physiological mechanisms. Yes, sex is fun for us because women have concealed ovulations and are constantly receptive, but why did they evolve that unusual reproductive physiology? Yes, men have the physiological capacity to produce milk, but why did they not evolve to exploit that capacity? For menopause as well, the easy part of the puzzle is the mundane fact that a woman's egg supply gets depleted or impaired by around the time she is fifty years old. The challenge is to understand why we evolved that seemingly self-defeating detail of reproductive physiology.