Отдел контроля и упаковки
Эту органеллу открыл итальянский ученый Камилло Гольджи, в честь него она и получила свое название. Аппарат Гольджи состоит из стопок плоских, изолированных друг от друга мешочков и участвует в транспорте молекул внутри клетки и за ее пределами. Частично это происходит с помощыр транспортных пузырьков. Они отделяются от эндоплазматической сети и вливаются в мешочек, находящийся у основания стопки. Здесь вещества сортируются, и формируется определенный, нужный на данный момент, состав веществ внутри мешочка.
Позже эти молекулы перемещаются во второй, третий и так далее мешочки стопки. При этом они достраиваются и дорабатываются, сортируются и «упаковываются» в новые пузырькй. В конце концов от aппарата Гольджи отделяются лизосомы или другие мембранные пузырьки — содержимое их может быть различным. Вещества, предназначенные для использования вне клетки, транспортируются в этом пузырьке к клеточной мембране и выбрасываются из клетки. Происходит это очень просто — пузырек сливается с мембраной, его мембрана становится частью мембраны клетки, а содержимое остается «за бортом».
Так из клетки выводятся образованные ею молекулы гормонов, капельки молока, слизи, межклеточное вещество кости, хряща и зубная эмаль, вырабатываемые клетками соответствующих тканей.
Нефтеперегонные предприятия
Все живые клетки (кроме бактерий) содержат очень важные органеллы — митохондрии, которые можно образно назвать «энергетическими станциями» клетки. Их может быть совсем немного, всего несколько штук, но существуют клетки, которые содержат свыше 1000 митохондрий. Эти миниатюрные тельца имеют различную форму — от щариков до нитей и палочек. Как и хлоропласты, митохондрии покрыты двойной мембраной. Наружная мембрана митохондрий гладкая, а внутренняя имеет множество складок, разделяющих полость митохондрий неполными перегородками. Эти складки во много раз увеличивают поверхность мембраны, ведь именно на ней «сидят» ферменты, осуществляющие важнейшие химические реакции. Помните, в хлоропластах ферменты также располагались на внутренней мембране, упакованной для увеличения поверхности в стопки мешочков — граны?
А вот функция митохондрий, по строению похожих на хлоропласты, прямо противоположная. Если хлоропласты синтезируют органические вещества из углекислого газа и воды, затрачивая энергию (света) и выделяя кислород, то митохондрии, наоборот, «сжигают» органические вещества, то есть фактически осуществляют обратную реакцию: тратят кислород, выделяют углекислый газ и воду и — самое главное — получают энергию.
Полученная в результате окисления энергия запасается в молекулах особого вещества, которое сокращенно называется АТФ (аденозинтрифосфорная кислота). Это вещество можно назвать стандартной «батарейкой», от которой могут работать все «приборы», все органеллы клетки.
Молекулы АТФ выходят из митохондрий и переносятся ко всем органе л лам клетки, работа которых связана с затратой энергии. Митохондрии каким — то образом передвигаются в цитоплазме и обычно сосредотачиваются в той части клетки, где в этот момент идет особенно интенсивная работа. Естественно, число митохондрий в клетке также прямо пропор* ционально интенсивности выполняемой ею работы. Особенно много митохондрий в клетках мышц.
Маленькие химеры
Химерой древние греки называли мифическое чудовище с головой и шеей льва, туловищем козы и хвостом дракона. Биологи называют химерами любые организмы или клетки, составленные из частей разных организмов. Обычно химерные организмы получают в лаборатории для различных генетических экспериментов, но оказалось, что химерами являются клетки абсолютно всех ядерных организмов — растений, животных и грибов!
Началось это удивительнейшее открытие XX века с обнаружения в митохондриях и хлоропластах, очень похожих друг на друга органеллах, кольцевой ДНК. Кроме того, митохондрии и хлоропласты, как выяснилось, размножаются делением и при этом их ДНК, как и положено при делении, удваивается. Это было и само по себе удивительно — зачем отдельным органеллам своя генетическая информация? Но еще удивительнее было то, что кольцевая ДНК свойственна безъядерным клеткам бактерий, а у ядерных организмов ДНК всегда линейная. Мало того, белки, поддерживающие структуру ДНК, в митохондриях и хлоропластах оказались аналогичные именно бактериальным, а не животным или растительным белкам. У ученых не осталось сомнений — в органеллах клеток ядерных организмов содержится бактериальная ДНК! Как она туда попала?