Выбрать главу

Механизм поиска растущего нейрона работает безукоризненно. Вот несколько зарисовок из истории развития нервной системы саранчи. У крохотного эмбриона имеются зачатки 17 нервных ганглиев. Большинство из них содержит по 30 зачаточных клеток. Они многократно делятся, и каждая дает начало целому семейству из 6–100 нейронов. В результате формируется ганглий, содержащий положенную тысячу нервных клеток. К восьмому дню жизни эмбриона около 100 его нейронов успевают вырастить свои отростки, которые объединяются в 25 пучков, образующих прямоугольную структуру, напоминающую лестницу.

Схема поиска нейроном нужной клетки

Ученые сумели проследить, как в этом, уже достаточно сложном ганглии растущий отросток нервной клетки, взятой под наблюдение, находит предназначенный ему путь. Оказалось, что его выросты обследуют практически все нервные волокна, пока не найдут нужный им пучок из четырех аксонов, Представляете, какая точность: выбор из 25 возможных вариантов! Но на этом дело не кончается. Выросты аксона изучаемой нервной клетки интересуются не всеми четырьмя волокнами обнаруженного пучка, а только двумя из них. Они растут рядом, тянутся в том же направлении и обвиваются вокруг этих волокон, пока не окажутся в том районе, где им положено находиться.

Изоляция

Развитие многоклеточного организма заключается не только в увеличении числа его клеток и овладении ими разными «профессиями». Оказывается, и сами клетки, если они хотят стать настоящими «профессионалами», должны развиваться. Особенно это касается нервных клеток, которые в будущем возьмут на себя функцию проводников нервных импульсов на большие расстояния.

Работа нервных клеток сопровождается электрическими реакциями. В наших квартирах и на производстве все проводники, по которым течет ток, надежно изолированы. Это абсолютно необходимо. Нервным клеткам мозга тоже требуется надежная изоляция. В нервной системе для этого используется жироподобное вещество — миелин. Он служит изоляцией для нервных волокон, входящих как в состав нервов, так и в состав мозга.

У высших позвоночных животных белое вещество мозга, представляющее собой скопление нервных волокон, больше чем наполовину состоит из миелина. Нарушения в образовании миелина приводят к тяжелым заболеваниям.

Аксон, покрытый миелиновой оболочкой: 1 — перехват Ранвье; 2 — митохондрии

Миелин покрывает длинный отросток нервной клетки — аксон — надежной оболочкой, предотвращающей электрические контакты между плотно упакованными нервными волокнами в нервах.

Оболочку образуют не сами нервные волокна, а особые шванновские клетки, которых в мозгу примерно раз в десять больше, чем нервных. Когда нервное волокно установит контакт с какой — то из клеток мозга, с каким — нибудь нервным волокном или мышцей, оно начинает воздействовать на ближайшие к нему шванновские клетки, которые тут же начинают расти, уплощаются и накручиваются на нервное волокно примерно так же, как мы бинтуем руку или палец. На один виток шванновская клетка затрачивает около 45 часов. Так идет этот процесс в пробирке, когда в особом бульоне находятся нервные и шванновские клетки. Возможно, в организме этот процесс осуществляется быстрее.

Схема строения изолированного нервного волокна: 1 — аксон; 2 — шванновская клетка; 3 — ядро шванновской клетки

По мере образования новых витков цитоплазма шванновской клетки сжимается. Зрелая миелиновая оболочка состоит из нескольких слоев этого живого «бинта». Каждая шванновская клетка изолирует всего лишь 1–2 миллиметра нервного волокна. Между его защищенными участками всегда остаются маленькие промежутки — перехваты Ранвье, где волокно остается ничем не защищенным.

Миелин играет в работе нервной системы важную роль. Он ускоряет проведение по нервному волокну нервного импульса. В состоянии покоя внутренняя сторона оболочки нервного волокна заряжена отрицательно, а наружная — положительно. Происходит это благодаря скоплению внутри волокна отрицательно заряженных, а снаружи положительно заряженных атомов (ионов).