Экскурсия продолжается
Но мы. с вами несколько углубились в теорию. Давайте вернемся на завод микроэлектронных изделий и продолжим знакомство с производством микросхем, уже с большим знанием дела проследим, что происходит с полупроводниковым кристалликом дальше. Теперь–то вы понимаете, для чего в него в одном месте нужно вводить примеси N–типа для получения электронной проводимости, а в другом примеси P–типа для получения «дырочной» проводимости.
«Транзистор включает в себя три области кристалла, которые обладают проводимостью разного типа, – говорит нам технолог. – Это эмиттер, база и коллектор. У базы проводимость «дырочная», а у эмиттера и коллектора, расположенных по обеим сторонам базы, – электронная. Или наоборот...»
По технологическим соображениям транзисторы интегральных схем конструируются так, что их кристаллические области как бы вложены одна в другую. Вот как это делается.
На кремниевую пластинку с проводимостью необходимого типа наносят маскирующую пленку (например, окись кремния) и фоточувствительный элемент – фоторезист. Теперь на нем надо наметить размеры будущего коллектора. Для этого засвечивают фоточувствительный слой через окошко в фотошаблоне – стеклянной металлизированной пластинке, на которую нанесен необходимый узор. Фоторезист экспонируют ультрафиолетовым светом, фотошаблон убирают, засвеченный слой проявляют. Экспонированный фоторезист растворяется, обнажая второй слой маски – слой окиси кремнии. Затем кремниевую пластину помещают в травящий раствор, который растворяет окисел, но не действует на кремний и фоторезист. На этом процесс фотолитографии заканчивается. Фоторезист удаляют, а обтравленную пластину отправляют в высокотемпературную печь, в атмосферу фосфора или бора. Это делается для получения соответственно областей с «дырочной» или электронной проводимостью.
Коллектор готов. Теперь надо формировать базу, и все повторяется сначала. Причем добавляется новая довольно сложная операция – совмещение каждого последующего фотошаблона с уже нанесенным на пластину рисунком; ведь последующие фотошаблоны уже нельзя накладывать на пластину как попало. А при изготовлении некоторых транзисторов иногда требуется десяток фотошаблонов.
И вот блестяще отработанная, повсюду применяемая фотолитография в 70–е годы XX века зашла в тупик. Она оказалась неспособной обеспечить воспроизведение структур меньше 1–2 мкм. И дело тут было уж вовсе не в сложностях точного совмещения фотошаблонов. Просто фотолитография приблизилась к предельным возможностям, связанным с длиной световой волны. Не помогло даже то, что технологи от видимого света перешли к более коротковолновому ультрафиолетовому излучению – свет все равно огибает препятствия, размеры которых соизмеримы с длиной волны.
Попробовали заменить световой источник энергии электронным лучом. Казалось бы, все в порядке: длина волны ускоренного электрона, используемого в электронном микроскопе, на несколько порядков меньше длины световой волны. Но за это решение пришлось заплатить весьма дорогой ценой: неимоверно возросли трудности, связанные с точным совмещением шаблонов, а это, в свою очередь, привело к резкому подорожанию самих интегральных схем.
Пара слов о самоформовании
Тогда технологи решили испробовать обходные пути, которые бы позволили формировать структуры интегральных схем без переноса рисунков. Среди доброй сотни всевозможных принципов давайте обратим особое внимание на способ самоформования, разработанный в Институте физики полупроводников АН Литвы С.С. Янушонисом и его коллегами. Он интересен не только тем, что допускает для формирования супермикронных структур использовать относительно простое технологическое оборудование. Еще этот способ характерен тем, что позволяет электронным микросхемам... самим себя лечить!
Как это может быть, проще всего понять на таком примере. Существуют шины, которые сами себя ремонтируют. Внутрь шины, кроме воздуха, закачивают небольшое количество герметика. Когда при проколе из шины начинает выходить воздух, вместе с ним в отверстие попадает и герметик, который и затыкает, ликвидирует прокол.