И ото принесло свои результаты. Вскоре российскому физику Алексею Катаеву, работающему в корпорации «Майкрософт», удалось модернизировать шоровский алгоритм. А еще через два года коллега Шора из той же «Белл Лабораториз» Лов Ювер показал, что квантовые вычисления гораздо эффективнее классических не только при взломе шифров, но и во многих других случаях.
В общем, уже никто не сомневался, что компьютер, считающий по законам квантовой механики, – новый этап в эволюции вычислительных устройств. Дело оставалось за малым – надо было создать это чудо техники.
Теория кубита
Поначалу вперед выступили опять;таки теоретики. Американский физик Вен Шумахер ввел в обиход понятие «квантовый бит» или «кубит». Подобно классическому биту информации, кубит теоретически может быть реализован, например в атоме, который находится в принципе в одном из двух энергетических состояний – возбужденном или спокойном.
Главное препятствие на пути построения квантового компьютера – так называемое время декогерентности, в течение которого заданное квантовое состояние разрушается.
Поэтому при выборе той или иной технологии прежде всего принимается во внимание число «шагов вычисления», которое можно успеть совершить, пока процесс не будет разрушен. К этому моменту результат вычислений должен быть «снят» и «переброшен» в другую ячейку или вообще в другой квантовый компьютер.
Например, система на ядерных спинах успевает совершить «всего» 10 млн шагов вычислений. (Причем «спин» в данном случае характеристика атома, показывающая, насколько быстро он вращается вокруг собственной оси.)
А вот для системы с так называемой ионной ловушкой время декогерентности измеряется уже числом 1013 шагов.
Технологические заморочки
Вслед за теоретиками за дело взялись и экспериментаторы.
Интересно, что технологию счета ка ядерных спинах они окрестили «компьютером в чашке кофе», так как первый в истории кубит па ее основе был реализован с помощью молекул горячей жидкости.
В 1997 году была построена модель квантового компьютера на двух кубитах. Группа исследователей из «ИБМ», Массачусетского технологического института и Калифорнийского университета в Беркли использовала для этого молекулы хлороформа.
Тут же выяснилось, что у технологии есть существенный недостаток: построение компьютера хотя бы из десятка таких кубитов требует охлаждения молекул до температур, всего на тысячные доли градуса отличающихся от абсолютного нуля (–273 градуса по Цельсию). А где взять такой холодильник?..
Атомные или ионные ловушки выглядят более технологично благодаря недавно разработанному методу охлаждения и пленения атомов лазерным лучом. Кубитом здесь служит атом или ион, который помещают в ловушку (изолируют и «подвешивают» с помощью электромагнитного поля или лазерного луча) и обстреливают лазерными импульсами. Управляя частотой и длительностью импульсов, можно организовать переходы пойманного атома из одного состояния в другое, то есть «считать на энергетических уровнях».