Выбрать главу

Правда, бетон не выдерживает изгибающие и разрывающие нагрузки, что затрудняет строительство больших бетонных (правильнее – армоцементных) судов. Однако корпус корабля испытывает такие нагрузки только при шторме, на глубине же подлодка избавлена от него.

Так что, если вдуматься, строить подводные лодки из бетона есть смысл.

С виду такая лодка может напоминать толстобрюхий самолет с короткими крыльями. В воде длинные и не нужны – водная среда в 800 раз плотнее воздушной. В носу логично расположить отсек управления, в корме – рули и водометные движители. Тут же поблизости разместятся и насосы с электродвигателями, которые будут питаться от аккумуляторных батарей, занимающих всю нижнюю часть подлодки. Ну а в центре разместятся пусковые шахты ракет–торпед.

Построить такой корабль можно так. На берегу нужно вырыть соответствующих размеров и формы котлован, в нем установить отсеки, арматуру – и все залить бетоном. После его схватывания вокруг "изделия" отрывается котлован большего размера, зачищается внешняя поверхность лодки, а потом удаляется перемычка, а импровизированный "док" заполняется водой, и бетонная подлодка отправляется в первое плавание. В общем, как видите, получается дешево и просто...

По примеру дельфина

Правда, подобный проект имеет и свои недостатки. Бетон – материал очень тяжелый, а одним из важнейших качеств подводной лодки является ее скорость в подводном положении. Существуют два главных способа повышения скорости подлодок.

Первый – это повышение мощности энергетических установок и их эффективности. Наиболее перспективным источником энергии для субмарин ныне считается газоохлаждаемый атомный реактор. Как тут не вспомнить капитана Немо, получавшего электроэнергию прямо из воды за счет разницы температур верхних и нижних слоев. Однако на практике подобные системы все еще обладают чрезвычайно низким коэффициентом полезного действия. Поэтому многие конструкторы питают большие надежды на гидрореактивные двигатели, которые будут работать за счет непосредственного нагрева забортной воды до состояния пара при протекании ее через вторичный контур ядерного реактора.

Второй способ увеличения скорости – уменьшение гидродинамического сопротивления корпуса лодки. Сначала для этого конструкторы копировали формы лучших пловцов океана – китов, акул, дельфинов. Но в этом направлении уже почти достигнут предел возможных усовершенствований. Поэтому ныне специалисты пытаются улучшить гидродинамические свойства корпуса за счет его покрытия.

Дело в том, что ученые установили: дельфины развивают скорость, в 8–10 раз превышающую их мускульные возможности. Каким образом? Полагают, что этому способствует особое строение кожи дельфина и физиологический механизм регулирования ее упругости. Иначе говоря, морские животные умеют превращать вихревой (турбулентный) поток жидкости, обтекающей тело, в ламинарный (слоистый). А это на порядок снижает энергетические затраты на преодоление сопротивления.

Понятно, что даже если обить снаружи всю лодку дельфиньей или акульей кожей, толку от этого не будет. Поэтому приходится идти обходным путем. Гидродинамики предлагают удалять вихри с поверхности лодки, отсасывая их вместе с водой из пограничного слоя. Подобный способ уже испытывается в авиации и показывает неплохие результаты. А законы аэро– и гидродинамики во многом схожи.

Как летать в воде?

Те же проблемы обтекания, но еще в большей степени, стоят и перед создателями торпед – основного оружия подлодок. Эксперты считают, что скорость торпед должна в ближайшее время достигнуть 200–300 узлов (500–600 км/ч).

Каким же образом обеспечить з воде самолетные скорости? Пришлось пойти на хитрость. Ныне чаще всего используются ракетоторпеды разных типов. Некоторые из них после старта тут же выходят из воды и большую часть пути до цели действительно пролетают.

Другой способ называется "полет в каверне". Суть его заключается в следующем. При быстром движении в воде частенько возникает кавитация, то есть лопасти винта или непосредственно нос судна так перебаламучивают воду, что в ней возникает множество пустот.

Схема "полета в каверне"

Обычно конструкторы стараются всячески избегать кавитации: ведь пустоты, схлопываясь, образуют ударные волны, которые с такой силой молотят, скажем, по лопастям винтов, что полностью выводят их из строя.