Выбрать главу

Теперь поговорим о принципах движения корабля. Для перемещения у него есть два типа двигателей. Первый — это антигравитационные батареи, которые используются при старте корабля с планеты; они развивают небольшую мощность, поэтому корабль довольно-таки медленно выходит в космос. Второй тип двигателя используется исключительно в открытом космосе — это мощный скоростной маршевый двигатель, с помощью которого можно развить многотысячекратное ускорение и достичь околосветовой скорости. Каждый двигатель применяется отдельно друг от друга и работает независимо один от другого, причем направление силы тяги обоих типов двигателей, а значит, и вектор создаваемого ими ускорения, может быть любым, — и, что очень важно, он не зависит от направления вектора перемещения звездолета! В результате всего этого путь корабля в космосе в общем случае является производным от трех независимых векторов или, говоря проще, от шести составляющих: трех значений и трех направлений — скорости, ускорения антигравитационных батарей и ускорения маршевого двигателя; правда, в открытом космосе антигравитационные батареи не используют из-за их малой мощности, в то время как маршевый двигатель — наоборот — практически не используют при старте с планеты из-за его очень большой мощности. Масса космического крейсера невелика относительно колоссальной мощности его маршевого двигателя, поэтому инертность движения космолета «скрадывается» чудовищной мощью его основного движителя, вот почему при полете в открытом космосе боевой корабль имеет прекрасные скоростные характеристики и мобильность, в результате чего и получает великолепную, прямо-таки фантастическую свободу маневра, — и именно поэтому скользящий в пустоте звездолет сравнивают с небольшой птицей, летящей по хаотической непредсказуемой траектории.

Надобность в антигравитационной батарее возникает потому, что основной маршевый двигатель корабля настолько силен по своей природе, что с его помощью практически очень сложно добиться слабого ускорения, — ускорения в несколько раз превышающего земное; в техническом плане тысячекратное ускорение получить гораздо проще, но при старте с планеты с таким значительным ускорением корабль просто-напросто сожжет себе корпус из-за трения об атмосферу, вот почему на звездолеты и ставится малосильная антигравитационная батарея, которая тихо-мирно выводит корабль в космос, не повреждая ни корпус, ни саму атмосферу планеты.

Оба типа двигателей не нуждаются в каких-либо шлюзах или же отверстиях в корпусе, как и все вооружение крейсера, поэтому внешняя броня корабля и является монолитной. Корпус звездолета имеет больше десятка слоев, из них первый внешний, ближайший к космосу — это толстая прочная броня, а последний внутренний — это слой воды. Оболочка корабля сделана с таким расчетом, чтобы выдержать все максимальные расчетные нагрузки и защитить внутренние помещения от излучения и элементарных частиц, а слой воды, в котором можно, в случае надобности, выращивать водоросли, во время боя также служит хорошим поглотителем микрочастиц и излучения.

Отойдя подальше от планет, чтобы не мешать работе межпланетных и межзвездных туннелей, с помощью корабельного пространственно-временного преобразователя космолет может создать свой собственный временный туннель и переместиться по нему или, как говорят обычно, «совершить прыжок»; при этом имеют значение начальная скорость и направление движения корабля в момент прыжка, но в основном характеристики тоннеля зависят от распределения массы и энергии, как в начале тоннеля, так и у его конца. Во время прохождения прыжкового туннеля экипаж корабля ничем не ограничен: можно включать и выключать двигатели, можно включать и выключать оружие, можно делать еще массу дел, но лучше не делать ничего, потому что этими действиями нарушается естественная прокладка туннеля через пространство, и следовательно, из него можно будет выйти не туда, куда рассчитывали. Самое лучшее — это не предпринимать ничего такого, что могло бы повлиять на пространство и на распределение массы и энергии в нем в течение всего прыжка (а прыжок длится не более десяти-пятнадцати минут корабельного времени — обычно, минуты две-три), то есть с чем корабль вошел в туннель, с тем пусть он и выходит: если надо включить (выключить) двигатель или же оружие, то лучше всего это сделать до прыжка, тогда во время и после него у экипажа не будет никаких неожиданностей и неприятностей.

Тоннель, по которому звездолет перемещается в пространстве обладает одним очень интересным свойством: его можно использовать не только для перемещения в космосе, но и для разгона (торможения) корабля, а также для изменения направления его движения. Аппаратура современных крейсеров позволяет с достаточно высокой точностью задавать все предпрыжковые параметры — таким образом, звездолет может одним прыжком разогнаться от какого-либо первоначального значения скорости до практически световой или же наоборот — затормозиться от световой до практически нулевой скорости; также можно задать и направление скорости, которое требуется иметь после выхода из туннеля. Следует отметить, что в противовес полету в космосе, когда векторы перемещения, скорости и ускорения обычно никогда не совпадают, в момент выхода из туннеля направление скорости всегда совпадает с направлением движения корабля, однако ускорение от работающего двигателя не обязательно должно совпадать с векторами скорости и перемещения — оно может иметь любое направление — и этот факт существенно влияет на принятие решения относительно требуемых характеристик прыжка.

Сам прыжок — очень сложный процесс, особенно в бою: дело в том, что окончание туннеля, не имея регулирующей аппаратуры, стремится самостоятельно стабилизироваться, для чего тянется к областям с высокими концентрациями массы и излучения, а это — звезды, плотные пылевые облака, планеты и астероиды. Выйдя из тоннеля, корабль имеет высокие шансы сгореть в звезде, или же врезаться в планету; также он может сжечь себе оболочку, а потом и внутренние помещения в облаке пыли или же уйти за горизонт событий черной дыры. Погибнуть при прыжке — проще простого, особенно, в панике убегая с поля боя, потому что начальные условия прыжка в сражении постоянно меняются из-за применения обеими сторонами основного оружия, вот почему, включив для прыжка пространственно-временной преобразователь, капитан может только предполагать, а не точно знать, какие будут начальные условия и, следовательно, куда их «вынесет» в конце концов, ведь начальные условия — а это распределение массы и энергии в точке прыжка — в битве меняются постоянно, причем непредсказуемо и в широких пределах. Именно поэтому бросать своих товарищей в бою, а самому спасаться бегством — опасно; по логике ведения космических битв трусость наказывается самим вечным космосом, забирая беглеца к себе без возврата и без остатка! Наилучший и самый надежный способ уцелеть в сражении между звезд — это победа над противником, в результате которой завоевывается пространство, очищенное от вражеских кораблей — это же самое пространство-время через некоторый промежуток времени успокаивается и в нем можно вполне спокойно и безопасно прыгать куда угодно — космос, лишенный мешающих прыжкам выстрелов неприятельских кораблей, достаточно гостеприимен и предсказуем.