Однако альфа-частицы естественных радиоактивных элементов малоудобны для подобных экспериментов, так как их энергии достаточно для внедрения только в ядра атомов легких элементов, имеющих небольшой заряд ядра. Ядра тяжелых элементов имеют большой положительный заряд, поэтому они сильно препятствуют проникновению в них положительно заряженных альфа-частиц. Кроме того, для получения значительных потоков альфа-частиц необходимо большое количество естественно радиоактивных изотопов.
Для проведения ядерных реакций более перспективна бомбардировка ядер атомов протонами и дейтронами, обладающими единичным положительным зарядом. Вследствие того, что радиоактивные изотопы не испускают ни протонов, ни дейтронов, были созданы специальные приборы, в которых этим частицам сообщалось большое количество энергии. В таких приборах, получивших название циклотронов, фазотронов, синхротронов, синхрофазотронов, заряженные частицы, получая энергию в несколько миллиардов электрон-вольт, приобретают большие скорости.
Для получения искусственных радиоактивных изотопов особенно удобно применять нейтроны. Действительно, нейтроны не обладают электрическим зарядом и не подвержены силам электрического отталкивания при приближении к ядрам атомов: они беспрепятственно могут проникать в любые ядра, вплоть до самых тяжелых. Вероятность захвата нейтрона ядром зависит от времени его пребывания вблизи ядра, поэтому чем медленнее движется нейтрон, тем она больше. В результате захвата нейтрона в ядре нарушается устойчивое соотношение между протонами и нейтронами, вследствие чего атом становится радиоактивным.
Большое количество нейтронов возникает в атомных реакторах, в которых ядро изотопа урана-урана - 235 под действием нейтронов делится на два ядра с атомными номерами, близкими к 30 - 49 и 50 - 63. В процессе деления из ядра урана вылетает два-три нейтрона. Некоторые из этих нейтронов затрачиваются на поддержание цепной реакции деления ядер атомов урана, а остальные, разлетаясь в разные стороны, могут служить для активации различных материалов. В современных реакторах возникают мощные потоки нейтронов - до 1013 - 1015 нейтронов на 1 см2 в секунду.
Реактор является удобным прибором для получения искусственно радиоактивных изотопов. В настоящее время большинство их получают на атомных реакторах. Ускорителями пользуются для получения тех изотопов, которые не могут быть получены в атомном реакторе.
Если мы посмотрим в таблицу радиоактивных изотопов, то увидим, что некоторые из них имеют очень короткий период полураспада, измеряемый минутами, а иногда даже и секундами. Такие изотопы нужно как можно быстрее извлекать из реактора. Для этой цели служит так называемая пневмопочта - специальное быстродействующее устройство, в котором давлением сжатого воздуха за 0,1 сек образец может быть введен в канал реактора либо перемещен из зоны облучения реактора в лабораторию для исследования.
За пять лет (1964 - 1968 гг.) Всесоюзная контора Изотоп поставила народному хозяйству различных искусственно радиоактивных изотопов на сумму 49 млн. рублей. В числе потребителей - свыше 500 лечебных учреждений[5].
Итак, за каких-нибудь 30 лет мы являемся свидетелями небывалого скачка в области развития науки о радиоактивности и практического использования радиоактивных изотопов и ядерных излучений в медицине, биологии, народном хозяйстве. В миллионы раз возросло количество радиоактивных изотопов, применяемых в науке и промышленности. Возникла совершенно новая область техники - атомная энергетика. Многочисленные ядерные реакторы используются для проведения научных исследований, изготовления радиоактивных изотопов, промышленного получения электроэнергии, движения морских судов, опреснения морской воды и т. д.
Изменилась энергия частиц и квантов, с которыми работают в лабораториях. Сравним хотя бы рентгеновскую трубку начала 30-х годов, работающую при напряжении несколько сотен тысяч вольт, с современными ускорительными установками, создающими потоки частиц и квантов с энергиями порядка сотен миллионов и даже миллиардов электрон-вольт. В СССР работает крупнейший в мире Серпуховский синхрофазотрон на 70 гэв (семьдесят миллиардов электрон-вольт).
Все это привело к тому, что в настоящее время во много раз возросло количество лиц, работающих с радиоактивными изотопами и ядерными излучениями. Возникли новые серьезные задачи по изучению биологического действия различных видов излучений на человека и окружающую его природу, защите от излучений, предохранению природы от радиоактивных загрязнений.