Выбрать главу

Началось с того, что в 1949 г. двое ученых, даже не подозревавших о существовании друг друга: И. Ф. Ковалев в СССР, в Одесском институте глазных болезней им. В. П. Филатова, и А. Кельнер в США, в институте Карнеги, одновременно открыли новое явление, которое затем получило в науке название фотореактивации. Микроорганизмы, облученные большой дозой ультрафиолетовых лучей (И. Ф. Ковалев работал с инфузориями, а А. Кельнер - с кишечной палочкой и грибками актиномицетами), в темноте быстро погибали; на рассеянном солнечном свету или при специальном освещении (лампой дневного света, накаливания или ртутной), выживало уже 20 - 50% облученных микроорганизмов, а иногда даже до 70-80%. Очевидно, видимый свет способствует "выздоровлению" облученных клеток, ускоряет восстановление нанесенных им повреждений (рис. 4).

Вскоре удалось установить, что повреждающее действие ультрафиолетовых лучей прежде всего сказывается на нуклеиновых кислотах клетки. Ультрафиолетовые лучи с длиной волны 2500 - 2700 А, легко поглощаемые нуклеиновыми кислотами, обладают наибольшим бактерицидным действием.

Механизм поражающего действия ультрафиолетовых лучей и фотореактивации был более глубоко изучен и понят лишь после того, как удалось раскрыть структуру молекул ДНК и их роль в процессах жизнедеятельности клеток. Оказалось, что бактерицидное действие ультрафиолетовых лучей главным образом объясняется образованием в ДНК одного специфического дефекта. Энергия ультрафиолетовых лучей, поглощенных азотистыми основаниями ДНК, особенно тимином, расходуется на разрыв двойной связи в тиминовом кольце. Если одновременно разрываются связи в двух близко расположенных кольцах тимина, то между ними образуется двойная связь. Образование таких соединений- димеров тимина - облегчает спиральная структура молекулы ДНК.

Димеры тимина препятствуют удвоению молекулы ДНК Примерно так же, как два слившихся зубца в застежке-молнии мешают ее раскрытию. Клетки, в которых образовалось несколько таких дефектов, теряют способность делиться и гибнут. Образование димеров тимина - главная причина бактерицидного действия ультрафиолетовых лучей. Поэтому бактерии, у которых ДНК богата тимином, особенно чувствительны к ультрафиолетовой инактивации.

Каким же образом видимый свет, действующий после ультрафиолета (эффект воспроизводится в интервале трех часов) может устранять возникшие дефекты? Чисто физические механизмы оказались непригодными для объяснения. А само явление фотореактивации вызвало очень большой интерес у ученых, когда выяснилось, что оно наблюдается не только у бактерий и грибков, но и у простейших (инфузорий, кольпидий, амеб), иглокожих (морских ежей), водорослей, низших и высших растений, земноводных и млекопитающих.

Первое представление о работе этого механизма ученые получили тогда, когда удалось при длительном облучении разновидности кишечной палочки, особенно устойчивой к радиации, получить форму, отличающуюся очень высокой радиочувствительностью. Измененный микроорганизм во всех остальных отношениях не отличался от устойчивого штамма, но погибал при дозах радиации, не влияющих на здоровье исходной разновидности. Высокая чувствительность нового штамма связана, вероятно, с нарушением функции восстановительной системы. Поскольку возникшие изменения - результат нарушения продукции одного или нескольких ферментов, можно предположить, что и темновая реактивация, подобно фотореактивации, осуществляется одним или несколькими ферментами. Сейчас ученые выделяют эти ферменты и изучают их свойства; кое-что о механизме "починки" поврежденной ДНК мы уже знаем.

Если фермент фотореактивации попросту расщепляет димеры тимина, то ферменты темнового восстановления, имеющие дело с более грубыми и разнообразными повреждениями ДНК, действуют иначе (рис. 5). Сначала поврежденный участок молекулы ДНК (одной ее цепочки) удаляется вместе с соседними неповрежденными нуклеотидами; благодаря второй цепочке целостность молекулы при этом не нарушается. Затем к месту дефекта поступают строительные материалы: азотистые основания, фосфаты, сахара, и целостность "оперированной" нити ДНК восстанавливается. Азотистые основания на отремонтированном участке выстраиваются не как придется, а в том же порядке, в каком были в нити ДНК до облучения. Это достигается благодаря присутствию второй, комплементарной нити, каждое азотистое соединение которой подбирает себе строго определенную пару. Восстанавливается, таким образом, не только целостность структуры молекулы ДНК, но и полный объем наследственной информации, закодированной в ней. Каждый этап темновой репарации (удаление повреждения, расширение дефекта, синтез нового участка цепи, сшивание нити) осуществляется при участии отдельного фермента или ферментной системы.