Выбрать главу

И все же, при всей странности выводов Вейсмана, с современной точки зрения, в них содержалось важное рациональное зерно: большинство признаков, приобретенных организмом в процессе жизнедеятельности, действительно не передается потомкам. Простой житейский опыт убеждает, что дети молотобойца или грузчика не наследуют его мощной мускулатуры, так же как дети инвалида войны лишены его увечий. Постоянство видовых и индивидуальных признаков в длинном ряду поколений обеспечивается существованием сложного и стройного механизма кодирования, сохранения, воспроизведения и передачи наследственной информации, особенностями устройства и обмена ДНК (которая, в отличие от белков, неохотно вступает в большинство биохимических реакций). Теперь мы знаем, что в обеспечении постоянства наследственных задатков организмов, в защите их от влияний среды немаловажная роль принадлежит и общему механизму восстановления повреждений ДНК, механизму исправления ошибок генетического кода.

Но ведь постоянство видовых свойств все-таки относительно: время от времени среди массы особей данного вида возникают новые признаки, виды изменяются, появляются новые, весь органический мир развивается, эволюционирует - это хорошо известно со времен Дарвина. Значит, какая-то часть повреждений ДНК все-таки остается неустраненной, и за счет этих изменений - мутаций, появляются новые признаки и свойства; наряду с наследственностью существует и изменчивость организмов. Из массы возникающих изменений механизм отбора, естественного или искусственного, сохраняет наиболее ценные, полезные признаки, способствующие эволюции вида, его лучшему приспособлению к условиям среды.

Следовательно, для успешного развития вида, его эволюции и выживания необходимо оптимальное соотношение между наследственностью и изменчивостью, оптимальная частота возникающих новых признаков. Вид, создавший в ходе эволюции слишком совершенную систему устранения дефектов ДНК, становится консервативным, не поспевает в своем развитии за изменением среды и в конечном счете перестает эволюционировать, оказывается в тупике и даже может погибнуть.

Существование системы исправления повреждений ДНК имеет не только общебиологическое, эволюционное значение. Важна роль этой системы в регуляции устойчивости организма, отдельных его клеток и тканей к радиации. Познав в деталях механизм исправления дефектов, люди смогут управлять им, по желанию повышая сопротивляемость важных органов действию радиации или искусственно повышая чувствительность опухолевой ткани к лучевой терапии.

От каких же факторов зависит эффективность деятельности восстановительной системы? Некоторые из этих факторов нам уже известны. Прежде всего это частота митозов: если она достаточно высока, интервал между облучением и митозом по крайней мере частично обеспечивает возможность восстановления. Снижение частоты митозов, достигаемое любым возможным методом (гипотермия, гипоксия, введение антимитотических средств типа колхицина, уретана, адреналина и т. п.), дает более или менее значительный противолучевой эффект главным образом благодаря деятельности восстановительной системы.

Реакция торможения митозов является у высокоорганизованных живых существ стереотипным, неспецифическим ответом на самые разнообразные воздействия. Шум, яркий свет, электрические и механические раздражения, колебания температуры и действие других физических и химических агентов более или менее значительной интенсивности - все они вызывают кратковременную, но ясно выраженную реакцию торможения митозов.

Можно полагать, что эта реакция имеет двоякое значение для жизнедеятельности организма. С одной стороны, она как бы сосредоточивает клетки на выполнении их специфической деятельности, в той или иной степени необходимой для правильного ответа на действующий раздражитель; не отвлекаясь для митотического деления, клетки, ткани и органы, очевидно, функционируют более полноценно. С другой стороны, реакция торможения митозов как бы заблаговременно мобилизует организм на борьбу с возможной опасностью, переводит его в состояние максимальной устойчивости и сопротивляемости, причем важнейшее значение имеет создание оптимальных условий для деятельности восстановительной системы.

Помимо частоты митозов эффективность работы восстановительного механизма ограничивается еще и размером повреждения. Если в молекуле ДНК одновременно разрываются обе нити, то такой разрыв чаще всего уже не восстанавливается: отсутствует образец, по которому ферменты темновой реактивации осуществляют ресинтез поврежденной полинуклеотидной цепи. Виды излучений, отличающиеся большей величиной линейных потерь энергии, большей плотностью ионизации (нейтроны, протоны, альфа-частицы и более тяжелые многозарядные ядра), вызывают в клетках более грубые повреждения, чаще обусловливают появление двойных разрывов в молекулах ДНК, которые почти не восстанавливаются. В этом одна из причин высокой биологической эффективности подобных излучений, их опасности для живых клеток и организмов.