Например, быстрый протон, попадая в ядро легкого элемента лития, совершает следующую реакцию (рис. 7):
Ядро лития содержит три протона и четыре нейтрона. После его слияния с протоном мы будем иметь новое ядро, содержащее восемь частиц (четыре протона и четыре нейтрона). Это уже изотоп бериллия с массовым числом, равным восьми. Но ядро бериллия8 неустойчиво и очень быстро распадается на две альфа-частицы (ядра гелия). При этом освобождается большое количество энергии.
После открытия в 1932 году Жолио-Кюри и Чадвиком нейтронов исследователи получили новое мощное средство для осуществления ядерных реакций. Нейтроны — незаряженные частицы, и на них не действуют электрические силы. Поэтому подойти к ядру и произвести ядерное превращение могут даже очень медленные нейтроны. Больше того, очень часто медленные нейтроны гораздо активнее, чем быстрые, производят ядерные превращения. Такие нейтроны находятся вблизи ядра большее время и поэтому легче захватываются ядерными силами ядра.
При захвате ядром нейтрона получается новое ядро, и так как нейтрон не имеет заряда, оно остается ядром изотопа первоначального химического элемента.
Даже самый медленный нейтрон, «упавший» под действием ядерных сил в ядро, приносит с собой значительную энергию. В результате захвата нейтрона ядро «нагревается». Охлаждение полученного ядра может, как мы уже говорили, проходить несколькими способами: из него выбрасывается одна или две частицы или испускаются гамма-лучи.
Например, целый ряд реакций с нейтроном дает ядро азота. На быстрых нейтронах может идти реакция с испусканием альфа-частицы:
Может идти также реакция, где из ядра азота15 вылетают две частицы. Происходит как бы размножение нейтронов:
На медленных нейтронах очень часто происходит такая реакция:
Эта реакция интересна тем, что дает нам искусственное радиоактивное вещество — углерод14 с периодом полураспада 5100 лет:
В результате обоих ядерных превращений мы опять получим ядро азота14. Но вместо захваченного нейтрона из ядра вылетели протон (водород1) и электрон.
Типичной нейтронной реакцией с испусканием гамма-лучей является захват протоном нейтрона и образование изотопа водорода — дейтерия:
Используя современные мощные источники нейтронов, можно получать значительные количества различных элементов, редко встречающихся в природе. Например, сверхтяжелый водород — тритий — можно получить в ядерной реакции:
Тритий — радиоактивный изотоп водорода, и за время около 12 лет половина его атомов распадается. При этом тритий превращается в устойчивый изотоп гелия с массовым числом 3, одновременно испуская электрон:
В настоящее время физики умеют даже превращать ртуть в золото. При этом может быть использована следующая ядерная реакция:
Правда, это золото обходится дороже самородного. Кроме того, оно неустойчиво и быстро распадается, излучая электрон (период полураспада 2,7 дня):
Тем не менее не исключена возможность получения дешевого золота из ртути или из других элементов. Но сейчас перед наукой стоят другие, более важные задачи.
Когда физик намеревается исследовать ту или иную ядерную реакцию, перед ним сразу встают вопросы: как велика вероятность осуществления этой реакции? Сколькими частицами надо обстрелять данное ядро, чтобы произошло ядерное превращение? Мы не будем входить в подробности этого вопроса: он достаточно сложен. Следует указать только, что не каждая заряженная частица, попадая в ядро, совершает ядерную реакцию. Огромное большинство частиц под действием электрических или ядерных сил рассеивается вблизи ядра и не производит ядерной реакции. Исключение составляют так называемые резонансные реакции, когда частицы, обладающие определенной скоростью (энергией), легко проникают в ядро.