Выбрать главу

Как мы уже с вами знаем, пи-мезоны и оказались частицами, о существовании которых предполагал Юкава. По-видимому, они и обусловливают ядерные силы, действующие между протонами и нейтронами. Пи- и мю-мезоны могут быть отрицательными и положительными, в зависимости от знака электрического заряда, который всегда равен по величине заряду электрона. Найден был также пи-мезон, не имеющий электрического заряда.

Последние годы оказались для физиков весьма продуктивными. Было найдено больше десятка новых элементарных частиц: ка-мезоны с массой около 1000 электронных масс и гипероны — частицы тяжелее протонов. Большинство этих частиц было найдено в космических лучах. Сейчас, когда ученые обладают весьма мощными ускорителями заряженных частиц, различные мезоны получаются искусственно.

Среди других элементарных частиц антипротон занимает несколько особое место. Дело в том, что история этой частицы начинается не с момента ее открытия, то есть с 1955 года, а значительно раньше.

Еще в 1928 году, когда известный физик Дирак создал уточненную теорию электрона, он с удивлением увидел, что из написанных им на бумаге уравнений вытекают не только свойства самого электрона. Эти уравнения указывали на существование еще и другой частицы, по своим свойствам противоположной электрону. Тут не могло быть математической ошибки, так как это уравнение очень точно предсказывало наблюдаемое в опыте поведение электрона. Но, может быть, Дираку следовало поступить так же, как школьнику, решающему задачу с квадратным уравнением: выбрать решение, имеющее физический смысл, а другое отбросить! Нет, уравнение Дирака говорит об одновременном существовании двух частиц: электрона и какого-то антиэлектрона. Дирак с большим сомнением рассказывал своим коллегам, что по совершенно непонятной ему причине его уравнение для электрона описывает частицу с массой электрона, но имеющую положительный заряд.

Сейчас мы знаем, что антиэлектроном оказался позитрон. Он был предсказан за несколько лет до своего открытия и обнаружен сначала в космических лучах, а затем уже получен искусственно. Позитрон — это удивительное, как бы зеркальное отображение своего собрата электрона.

Теория Дирака дает нечто большее, чем предсказание существования позитрона. Она говорит о существовании античастиц у тяжелых ядерных частиц: антипротона и антинейтрона, и дает возможность также предсказать основные свойства этих частиц. В частности, антипротон должен обладать массой, равной массе протона, и в противоположность ему иметь отрицательный заряд. При встрече с протоном такая пара, протон-антипротон, исчезает. Эта атомная катастрофа по своим масштабам значительно больше, чем аннигиляция электрона и позитрона, и сопровождается выделением энергии, равной двум миллиардам электронвольт.

Получить антипротон значительно труднее, нежели позитрон. Для рождения пары электрон-позитрон нужен гамма-квант с энергией около одного миллиона электронвольт. Рождение же антипротона может произойти только при столкновении двух нуклонов. При этом должна затратиться энергия, равная двум миллиардам электронвольт.

Вполне естественно, что ученые пытались вначале найти антипротоны в космических лучах, где происходит столкновение ядерных частиц с колоссальной энергией. Однако найти следы антипротона в фотоэмульсии среди миллионов следов других частиц различной массы и энергии, конечно, очень трудно. Были найдены следы, которые, судя по многим признакам, должны принадлежать антипротонам. Но здесь могла быть и ошибка. Поэтому ученые обратились к мощным ускорителям, на которых получается очень много заряженных частиц с энергией в несколько миллиардов электронвольт.

Трудности получения антипротона усугубляются тем обстоятельством, что при столкновении нуклонов не вся энергия расходуется на рождение пары протон-антипротон. Большая часть энергии удерживается сталкивающимися нуклонами. Поэтому для рождения антипротона нужна энергия не менее четырех миллиардов электронвольт, если столкновение происходит между свободными протонами (или нейтронами), и больше пяти миллиардов электронвольт, если столкновение нуклонов происходит внутри ядра.

Протоны с такой энергией были получены в 1955 году на большом ускорителе — космотроне в Беркли (Калифорния), и это дало возможность группе американских физиков под руководством Сегре, Чемберлена и других в 1955 году получить антипротоны при бомбардировке быстрыми протонами медной мишени.