Выбрать главу

У водорода, например, три изотопа, схемы атомов которых приведены на рис. 3. В ядре каждого изотопа водорода есть один протон, и поэтому во всех атомах существует по одному электрону, который уравновешивает положительный заряд ядра. Дейтерий — устойчивый изотоп водорода с массовым числом 2 — содержится в природном водороде в количестве 0,02 процента. Ядро его атома состоит из одного протона и нейтрона. Ядро сверхтяжелого радиоактивного водорода — трития состоит из трех частиц: одного протона и двух нейтронов. Трития в природной смеси водорода почти нет. Но сейчас он может быть получен в довольно больших количествах искусственно в ядерных реакторах.

Рис. 3. Схема строения изотопов водорода

Число устойчивых изотопов у отдельных химических элементов, например у олова, доходит до 10.

В настоящее время физикам известно около трехсот устойчивых и примерно восемьсот радиоактивных изотопов.

Ядерные силы. Теперь мы уже знаем, что изотопов значительно больше, чем элементов. Но почему ядра одних изотопов устойчивы (и они встречаются в природе часто), а других — легко распадаются и радиоактивны?

Что удерживает частицы в атомном ядре?

Между протонами, так же как и между другими одноименно заряженными частицами, действуют отталкивающие электростатические силы, которые при малых размерах ядра должны быть достаточно велики. Конечно, эти силы не могут осуществлять связь между частицами в ядре. Для того чтобы ядро оставалось очень прочным и компактным, необходимы очень большие силы, которые притягивали бы друг к другу ядерные частицы. О природе этих сил мы пока еще знаем очень немного. Знаем, что в то время как электростатические силы (притяжения и отталкивания) действуют на довольно больших расстояниях, ядерные силы имеют существенное значение только при сближении ядерных частиц. Если радиус атома определяется электростатическими силами притяжения, действующими между отрицательно заряженным электроном и положительным ядром, и равен примерно одной стомиллионной доле сантиметра (10-8 сантиметра), то радиус ядра определяется действием ядерных сил и приблизительно равен одной тысячемиллиардной доле сантиметра (10-12 сантиметра)[1].

Таким образом, как ни мал атом, на его диаметре можно уложить примерно 10 тысяч ядер.

Ядерные силы, по-видимому, могут быть объяснены взаимодействием протонов и нейтронов с какой-то третьей частицей. (В дальнейшем протоны и нейтроны мы иногда будем называть нуклонами.) Эта частица появляется при преобразовании протона в нейтрон или нейтрона в протон и является общей для двух взаимодействующих нуклонов. Таким образом, ядерные силы связаны с обменом частицами. Поэтому силы подобного типа называют обменными силами. Они весьма своеобразны и недостаточно наглядны в наших обычных представлениях. Для этих сил весьма характерно то, что их действие связано с обменом, с переменой ролей между двумя участвующими в этой связи нуклонами.

Протон и нейтрон непрерывно обмениваются друг с другом частицами, которые одновременно связаны с обоими нуклонами. По всей вероятности, такими частицами являются открытые в последние годы π-мезоны (пи-мезоны). Малый радиус действия ядерных сил объясняется тем, что π-мезоны — тяжелые частицы — не могут надолго покидать протоны и нейтроны. Вылетев, они либо возвратятся обратно, либо поглотятся другими ядерными частицами. Для последнего надо, чтобы нуклоны находились близко один от другого. Так осуществляется связь между ядерными частицами.

Ядерные силы имеют некоторое сходство с химическими силами, которые также являются обменными. В молекулах тоже происходит обмен частицами. Для примера можно взять ион молекулы водорода (рис. 4). Здесь имеются два протона вокруг которых вращается один электрон. Такой ион является вполне устойчивым образованием, и сила, которая определяет его устойчивость, связана с взаимодействием двух протонов с одним общим электроном. По-видимому, можно считать, что электрон вращается то вокруг одного, то вокруг другого протона. Здесь, так же как и в ядерных системах, сила связана с обменом частицей, с переходом электрона от одного протона к другому.

Рис. 4. Ион молекулы водорода. Два протона обмениваются одним электроном
вернуться

1

В физике принято большие и малые числа обозначать в виде положительной или отрицательной степени числа 10. Например, число молекул в одном кубическом сантиметре газа (число Лошмидта) равно 27 000 000 000 000 000 000 — двадцать семь миллиардов миллиардов. Такое число трудно выговорить и гораздо проще его записать так: 2,7∙1019 (два и семь десятых, умноженное на десять в девятнадцатой степени). Малые величины будут записываться как отрицательные степени числа 10. Так, в нашем случае радиус атома равен сантиметра, то есть единице, деленной на единицу с восемью нулями: 10-8 (десять в степени минус восемь). В дальнейшем мы будем придерживаться этих обозначений.