Близко к великой цели. Оказалось, что для успеха дела — получения температуры в миллион градусов — нужны токи порядка сотен тысяч и даже миллиона ампер. Такой ток можно пропустить через плазму разрядной трубы только при напряжении в несколько десятков тысяч вольт. Достаточно перемножить значение тока и напряжения, чтобы убедиться, что мощность установки превосходит мощность всех гидроэлектростанций Советского Союза. Выход заключался в том, чтобы пропускать через разрядную трубку мощные токи в виде импульсов, длящихся миллионные доли секунды. Тогда при колоссальной мгновенной мощности средняя мощность, потребная для питания установки, получается вполне приемлемой величины.
Газоразрядная трубка с дейтерием в экспериментальной установке получала электрическое питание от мощной батареи высоковольтных конденсаторов при напряжении 50 тысяч вольт.
Много нового и чрезвычайно интересного открыли советские физики при исследовании сверхмощных импульсных разрядов. Применяя специальные и очень остроумные измерительные приборы, они обнаружили, что газ в трубке стягивается в узкий плазменный шнур, оторванный от стенок сосуда. Плазма испытывает резкие колебания, связанные с последовательным сжатием и разряжением. В сосуде возникают ударные волны с невиданной скоростью распространения — несколько сот километров в секунду. Температура плазменного шнура в момент наибольшего сжатия достигала миллиона градусов.
Интересно отметить, что в ряде исследований применялась сверхскоростная киносъемка. Киноаппарат фотографировал около двух миллионов кадров в секунду. После проявления кинопленки перед глазами физиков раскрывались все особенности процессов, длившихся миллионные доли секунды. Группа физиков и теоретиков обработала экспериментальный результат. Многие до сих пор неизвестные явления получили объяснения.
Термоядерная реакция в дейтерии всегда сопровождается излучением нейтронов. С большим удовлетворением в 1952 году физики уже в первых опытах обнаружили нейтронное излучение. Но, увы, радость была преждевременна. Дальнейшие исследования и расчеты показали, что нейтроны появляются уже при таких малых разрядных токах и температурах плазмы, когда термоядерной реакции практически еще не может быть. Было также обнаружено, что одновременно с нейтронами появляются и гамма-лучи. По своим свойствам они соответствовали рентгеновским лучам, испускаемым рентгеновской трубкой с напряжением 300–400 киловольт.
Хотя нейтроны и гамма-лучи не могли быть следствием возникающих термоядерных реакций, но это явление само по себе представляет огромный интерес.
Для их объяснения необходимо допустить, что в плазме имеются весьма быстрые заряженные частицы, которые могут быть получены при разности потенциала на электродах разрядной трубки в несколько сот киловольт. Но все приборы убедительно показывали, что в момент излучения нейтронов и гамма-лучей напряжение на трубке всего 10 киловольт.
Это явление пока не получило удовлетворительного объяснения. Вполне вероятно, что в плазме происходят такие процессы, при которых часть медленных заряженных частиц ускоряется и получает очень большую энергию, достаточную для получения нейтронного и гамма-излучений.
Исследования ближайшего времени позволят создать стройную теорию этих процессов. Впереди еще много трудностей. Если мы хотим получить термоядерную реакцию в каком-либо кратковременном процессе, то прежде всего необходимо, чтобы за время этого процесса выделялась значительно бóльшая энергия, нежели затрачиваемая в начале процесса. Этого пока еще нет.
Еще более трудной задачей является получение длительной и медленно протекающей термоядерной реакции.
Советские физики близко подошли к решению великой проблемы — получению искусственной и управляемой термоядерной реакции. Как знать, может быть, через несколько месяцев или лет советские читатели узнают о новой огромной победе ученых.
Еще немного фантазии. Даже если нам удастся осуществить сверхвысокие температуры, проблема получения энергии термоядерных реакций еще не будет решена. Мы сможем зажечь термоядерную реакцию, но надо научиться управлять ею. Нам не удастся использовать энергию, если после того, как мы «подожжем» нашу ядерную смесь, произойдет атомный взрыв.
Намечаются два пути исследования энергии термоядерных реакций. Первый путь заключается в осуществлении медленного горения ядерной смеси. Так происходит на Солнце и звездах, но мы хотим построить свое маленькое Солнце на земле. Тогда перед учеными встанет еще одна довольно трудная задача: надо будет научиться использовать энергию, получаемую при температуре в миллион градусов.