Выбрать главу
Рис. 10. Основные структурные элементы и схема функционирования адренер гического синапса (Голяков, Фишзон-Рысс, 1978). 1 — гранулы депонирования норадреналина (НА); 2 — синаптические пузырьки; з — обратный захват НА; 4 — сипаптическая щель; КОМТ — кате-хол-орто-метилтрансфераза; МАО — моноаминоксидаза; ДОФА — диокси-фенилалашш; Тир — тирозин; α-АР и β-AP — α- и β-адренорецепторы

Согласно современным взглядам, адренорецепторы представляют собою металлопротеиды, имеющие двучленное строение с атомом железа или марганца в роли связующего звена, что позволяет одновременно фиксироваться на них 2 молекулам медиатора. По крайней мере такая структура с достаточным основанием приписывается α-адренорецепторам (рис. 9).

Мгновенная инактивация медиаторов в адренергических синапсах осуществляется большим числом ферментов,[88] из которых главное значение имеют моноаминоксидаза и катехоламин-орто-метилтрансфераза (КОМТ) (рис. 10). Данные ферменты катализируют окислительное дезаминирование катехоламинов. Биохимиками более изучена структура и функция моноаминоксидазы, которая в отличие от холинэстеразы является сложным металло-протеидом, имеющим в составе своей молекулы активную каталитическую часть особой химической структуры, именуемую в биохимии простетической, или коферментной и включающую пиридоксальфосфатную группировку и атомы меди. В свою очередь пиридоксальфосфат состоит из пиридоксина (витамина В6) и фосфорной кислоты. Согласно принятым данным,[89] именно пиридоксин и медь являются важнейшими компонентами активных каталитических центров моноаминоксидазы и ряда других ферментов, получивших общее название пиридоксалевых.

Серотонин

Результаты экспериментальных и клинических исследований позволяют теперь с достаточной определенностью говорить о существовании такого медиатора нервного возбуждения, биохимическая роль которого связана в основном с высшей нервной деятельностью. Речь идет о серотонине (5-окситриптамине), который считается химическим передатчиком нервных импульсов в центральных синапсах главным образом стволовой части головного мозга. Источником образования серотонина в организме является одна из жизненно важных аминокислот — триптофан, который под действием специфического фермента (оксидазы) превращается в 5-окситриптофан, а последний декарбоксилируется (теряет СО2) и превращается в серотонин:

Понятно, что после выполнения медиаторной функции (т. е. после воздействия на соответствующие рецепторы) молекулы серотонина, подобно другим медиаторам, мгновенно инактивируются. Это происходит вследствие дезаминирования и окисления под влиянием фермента моноаминоксидазы. Следовательно, катехоламины и серотонин связывает общность путей биотрансформации. В этой связи небезынтересно сопоставить химическую структуру адреналина и серотонина. Если допустить, что этиламиновая группа адреналина изогнута, то по своей конфигурации его молекула представляет собою разорванный индольный гетероцикл:[90]

Основываясь на такой точке зрения, можно предположить, что биоструктуры, с которыми взаимодействует серотонин, близки по своему строению с адренорецепторами. Подобие химического строения серотонина с веществами, близкими к адреналину, имеет значение для понимания молекулярного механизма действия некоторых психотомиметических ядов.

Гамма-аминомасляная кислота

В последние 25 лет все большее внимание биохимиков, фармакологов, токсикологов привлекает еще один медиатор передачи импульсов в нервной системе — гамма-аминомасляная кислота (ГАМК). Этот медиатор является нормальным продуктом обмена веществ у млекопитающих и образуется из глутаминовой кислоты при действии пиридоксалевого фермента глутаматдекарбоксилазы:

Теперь считается доказанным,[91] что ГАМК тормозит развитие и проведение импульсов в центральной нервной системе. Следовательно, можно полагать, что по своему биохимическому действию ГАМК есть антагонист тех эндогенных и экзогенных веществ, которые вызывают или стимулируют в нервной системе возбудительный процесс. Освобождающаяся при раздражении тормозных нервных структур (проводящих путей, нервов, клеточных скоплений) ГАМК преодолевает синаптическую щель и вступает во взаимодействие с рецепторами постсинаптической мембраны (ГАМК-рецепторами). По И. А. Сытинскому, ГАМК-рецептор — субклеточная структура (фосфолипидно-белковьй комплекс) постсинаптической мембраны с активными участками, облегчающими сорбцию медиатора на его поверхности. Не исключается, что ГАМК-рецепторы, подобно адренорецепторам, имеют двучленное строение и, следовательно, могут активироваться 2 молекулами медиатора. Медкаторное действие ГАМК в центральной нервной системе можно также объяснить сходством ее химического и пространственного строения с ацетилхолином:

вернуться

88

Так, профессор А. М. Утевский указывает на наличие 6 групп ферментов, каждая из которых ответственна за биохимические превращения отдельных составных частей молекул катехоламинов (Утевский А. М. Обмен катехоламинов и его функциональное значение. — В кн.: Адреналин и норадреналин. М.: Наука, 1964, с. 8–18).

вернуться

89

Горкин В. З. Моноаминооксидазы (современные представления о природе и физиологической роли). — В кн.: Биогенные амины. Тр. 1-го Моск, мед. ин-та/ Под ред. В, В. Меньшикова. М., 1967, т. 52, с, 146–161.

вернуться

90

Салямон Л. С., Галлюциногены. — В кн.: Руководство по фармакологии. Л.: Медгиз, 1961, т. 1, с. 439–440.

вернуться

91

Сытинский И. А., Гамма-аминомасляная кислота — медиатор торможения в нервной системе, — Природа, 1973, № 1, с. 20–29.