Выбрать главу

Поэтому учитывается возможность конкурентного антагонизма этих медиаторов в их действии на холинергические рецепторные структуры: взаимодействие с ГАМК защищает холинорецептор от стимулирующего влияния ацетилхолина.

Как и другие медиаторы, ГАМК разрушается в постсинаптических структурах с помощью специфического катализатора. Им является фермент ГАМК-трансаминаза. Важно при этом иметь в виду, что при инактивации ГАМК вновь образуется ее предшественник — глутаминовая кислота. С другой стороны, закономерно, что блокада трансаминазы приводит к избытку ГАМК в синапсах.

Яды — блокаторы пиридоксалевых ферментов

Ряд ядов избирательно влияет на медиаторную функцию катехоламинов, серотонина и ГАМК. Один из них — сероуглерод (CS2) — высокотоксичное производное дитиокарбаминовой кислоты (), широко применяющееся в производстве вискозных волокон, целлофана, ядохимикатов, четыреххлористого углерода, а также в качестве растворителя.

При попадании сероуглерода в организм через органы дыхания, кожу, зараженную пищу и воду возникают характерные явления нейроинтоксикации. Вначале отмечается возбуждение, нарушение координации движений, рвота, бред, а затем апатия, заторможенность, потеря памяти. В особо тяжелых случаях утрачивается сознание, угнетаются или даже исчезают зрачковые и сухожильные рефлексы, расстраивается дыхание и работа сердца.

Работами ряда исследователей прежде всего советских (З. X. Черный, Ж. И. Абрамова и др.), с достоверностью установлено, что сероуглерод является специфическим ингибитором моноаминоксидазы. Это в свою очередь приводит к нарушению обмена биогенных аминов, в особенности окисления серотонина, накоплению его и других медиаторов в синапсах и к избыточной функции адрено-рецепторных структур. В свете такого механизма становится понятным найденный упомянутыми авторами при сероуглеродной интоксикации дефицит в организме витамина В6 и меди.[92] Надо иметь также в виду, что в организме CS2 связывается с другими биоструктурами, содержащими свободные сульфгидрильные и аминные группы. Образующимся при этом тиокарбаматным соединениям приписывается способность связывать биоэлементы, в том числе медь, и тем вторично нарушать функцию металлсодержащих ферментов (моноаминоксидазы и др.).

Рассмотрим далее токсикологические особенности гидразина (N2H4) и его соединений, которые широко используются в промышленности (производство пластических масс, синтетических смол, каучука, красителей, взрывчатых веществ и др.), как ядохимикаты и химические реактивы, а также в клинической медицине при лечении туберкулеза, опухолевых заболеваний и в качестве психофармакологических средств. Кроме того, соединения гидразина как сильные восстановители применяются для стабилизации жиров, фруктовых соков и других продуктов, о некоторые из них используются как регуляторы роста растений. Несмотря на различия в химическом строении отдельных представителей этого класса соединений, их объединяют важнейшие признаки резорбтивного действия, которые мало зависят от путей поступления веществ в организм. При воздействии на организм больших доз гидразина и высокотоксичных веществ, синтезированных на его основе, на первый план выступают расстройства со стороны нервной системы: головная боль, возбуждение, судороги, потеря сознания, параличи, а также симптомы поражения печени.

Теперь не вызывает сомнения, что основным первичным объектом их токсического воздействия на молекулярном уровне является уже знакомый нам фермент глутаматдекарбоксилаза, а во взаимодействие с ядами вступает ее кофермент — пиридоксальфосфат. Один из возможных механизмов такой реакции представлен в виде следующей схемы:

вернуться

92

Есть еще немало распространенных в промышленности производных тио- и дитиокарбаминовой кислоты (карбатион, цинеб и др.), которые, как и сероуглерод, являются ингибиторами моно-аминоксидазы и вызывают во многом сходную с ним картину отравления. Подобным же образом действует на организм такой известный в химическом производстве продукт, как трихлор-этилен.