Выбрать главу

Другой вывод следует из модели не распространяющейся стоячей волны, основанной на идеализированном представлении об анатомическом распределении связей между нейронами (Scholl, 1956). Все предположения, лежащие в основе этой модели, вполне разумны: 1) нейроны распределены в случайном порядке; 2) богатство связей между клетками уменьшается с расстоянием;. 3) пространственная структура распределения процессов в каждой клетке отличается тем, каким образом она передает возбуждение другим клеткам; 4) наблюдается затухание возбуждения во времени, то есть изменение потенциала в местах соединений имеет конечную длительность, и, наконец, 5) возбуждение само себя поддерживает.

Последнее предположение при отсутствии информации о тормозных взаимодействиях говорит о том, что любое состояние равновесия будет неустойчивым и что «вскоре обнаружится, что-активность в одних местах уже прекратилась, а в других возникла. По этой причине всегда предпочтительнее активность,, имеющая определенную пространственную и временную организацию…» (Beurle, 1956).

Детальные исследования электрической, а также анатомической структуры некоторых наиболее организованных мозговых образований в целом подтверждают обоснованность этих заключений.

«Лучше всего вто можно понять, если представить себе, что кора мозжечка… непрерывно подвергается воздействиям вследствие возникновения микроволн; каждая волна – это небольшой гребень активации длиной 3 мм , она возникает от клетки Пуркинье, которая имеет на другом конце тормозной сток. Эти волны не распространяются, но, конкурируя и интерферируя друг с другом, они, конечно, сильно модифицируют структуру волновых форм; более того, такая интерференция ведет даже к укорочению-волны, длительность которой становится менее 100 мсек. Эта операция конкурирующего взаимодействия волновых структур должна быть ключом к разгадке действия нейронного механизма…» (Eccles, Ito and SzentagoLhai,. 1967, p. 342).

Действительно, запись электрической активности, полученная от множества электродов, которая одновременно может быть представлена в пространстве (на топоскопе), говорит о возникновении какой-то волновой активности (Walter and Shiptom, 1951;. Lilly, 1949; Ливанов и Ананьев, 1955; Rernond, 1961). В каком отношении эта волновая форма соответствует нераспространяющейся стоячей волне, о которой говорил Берл (Beurle), остается еще исследовать. Важно в данном случае то, что описание нейронной активности медленных потенциалов как механической волны может помочь представить себе природу микроструктуры медленного потенциала или – более формально – послужить моделью, которая поможет дать более точную интерпретацию данных. Таким образом, подобный подход, состоящий в уподоблении медленного потенциала механической волне, хотя и не является необходимым для описания микроструктуры медленного потенциала, может в данном случае оказаться полезным (см. гл. VIII, рис. 1-16).

Рис. 1-16. Диаграмма, показывающая зависимость ЭЭГ космонавта Ф. В. от высоты подъема в камере, имитировавшей полет «Джеминай». Соотношение было исследовано на протяжении 70-минутного периода времени, в течение которого было сделано 40 записей. Каждая из них длительностью 20 мин. Обратите внимание на характеристику волнового фронта диаграммы и сравните ее с диаграммой на рис. 1-6 (Adey, 1967).

В заключение скажем, что наиболее распространенные представления о функции мозга основаны на том, что нервные импульсы возникают в нейронах и по ним передаются. Хотя точные нейрофизиологические исследования иногда предостерегают против чрезмерного упрощения, эти привычные представления, как ни странно, игнорируют активность соединений за исключением тех случаев, когда она имеет отношение к передаче нервных импульсов. Согласно этим взглядам, первичная задача синапса (или дендрита) состоит в передаче (или генерации) импульсов.

В противоположность этому Дж. Бишоп (1956) в заключительном обзоре, посвященном «действительной истории нервного импульса», утверждает, что «главные и наиболее характерные функции нейронов и других тканей, способных к возбуждению, проявляются посредством градуальных ответов». Он считает, что медленные градуальные потенциалы являются «более общим и более примитивным ответом, чем ответ «все или ничего», и что последний, вероятно, возник, когда древний многоклеточный организм стал слишком большим…». Бишоп анализирует довод в пользу утверждения, что кора головного мозга «все еще в большой степени функционирует посредством связей, характерных для примитивного неиропиля, что является самым подходящим; механизмом для поддержания непрерывного или устойчивого состояния, в отличие от передачи информации о таких состояниях». Вероятно, дендриты скорее, чем «проводящий импульс аксон»„ являются важнейшими элементами ткани с градуальным ответом. Подход, принятый в данной работе, согласуется с точкой зрения Бишопа. Активность соединений обладает эффективным способом действия, в котором доминируют механизмы непрерывного-нарастания и убывания медленных градуальных потенциалов. Благодаря этому возникает богатая и часто игнорируемая возможность понимания состояния как части двухпроцессного механизма, характеризующего мозговые функции. Это состояние вовсе не носит общего, глобального характера. Скорее, наоборот, оно само имеет микроструктуру, состоящую из медленных потенциалов соединений. Следовательно, нет нужды рассматривать нейрофизиологию всех психологических процессов исключительно в терминах операций проведения нервных импульсов. Признание Межпроцессного механизма деятельности мозга открывает перед исследователями более широкие возможности, эта концепция может быть очень плодотворной.

РЕЗЮМЕ